If (
G is a group) and (
\rightcat X is a set), (a (right)
group action) is
(a function
\boxed{{\rightcat X} \times G \to \rightcat X}) which is associative and unital,
meaning that
x(gh) = (xg)h and
xe = x,
where
x\in \rightcat X,
g,h\in G and
e is the unit (identity) element of
G.
For (a left group action), just replace
{\rightcat X} \times G with
G \times {\rightcat X},
and change the equations to
(gh)x = g(hx) and
ex = x.
For some important examples of group actions, see the post on
The bimodule of sets, functions and permutations.
<hr/>
For (given G,\rightcat X) in (a cartesian closed category), there are two other, equivalent, ways of (giving the structure) and (formulating the axioms), given as follows:
\boxed{ \begin{array} {cccccccccc|clc|cccccccc|l} &&& {} \rlap{ \kern-2em \text{Structure} } &&&&&&& {} \rlap{ \kern8em \text{Description} } &&& {} \rlap{ \kern1.5em \text{Equational Axioms, aka Constraints} } &&&&&&&& {} \rlap{ \kern3em \text{Comment} } \\ &&& &&& &&& &&& && {} \rlap{ \kern-1em \text{Identity Axiom} } &&&& {} \rlap{ \kern-1.5em \text{Associativity Axiom} } \\ \hline {\rightcat X}_{-} & : & G & \to & [\rightcat X,\rightcat X] & : & g & \mapsto & {\rightcat X}_g &&& \text{the monoid $[\rightcat X,\rightcat X]$ as a $\textit{representation}$ of $G$} &&& {\rightcat X}_e & = & \rightcat{1_X} && {\rightcat X}_g{\rightcat X}_h & = & {\rightcat X}_{gh} & \rightcat X \text{ is functorial} \\ \hline {\rightcat -} \tensor {-} & : & {\rightcat X} \times G & \to & \rightcat X & : & \langle x,g \rangle & \mapsto & x \tensor g = xg &&& \text{$\rightcat X$ as a $\textit{module}$ over $G$, i.e. as a $G{-}\textit{module}$} &&& xe & = & x && (xg)h & = & x(gh) & \text{the action is associative} \\ &&&&&& [x]g & \mapsto & (x)g = xg &&& \text{Kelly's notation for actions of "clubs"} && &(x)e & = & x && \big((x)g\big)h & = & (x)(gh) \\ \hline \rightcat{ \widehat{ \black{(-)} } } & \rightcat : & \rightcat X & \rightcat\to & \rightcat{ [\black G, X] } & : & x & \rightcat\mapsto & \rightcat{ \hat{\black x} } &&& \text{the $G{-}\textit{orbits}$ of $\rightcat X$} : &&& e \rightcat{ \hat{\black x} } & = & x && h \rightcat{ \widehat{ \black{( g \rightcat{ \hat{\black x} } )} } } & = & (gh) \rightcat{ \hat{\black x} } \\ &&& &&& &&& && \boxed{ \rightcat{ {\hat{\black x}} : {\black G} \to X : {\black g} \mapsto {\black g} \rightcat{ \hat{\black x} } = {\black x}{\black g} = {\black x} X_{\black g} } } & &&& &&& \rightcat{ \hat{\black x} } {\rightcat X}_h & = & G_h \rightcat{ \hat{\black x} } & \text{each orbit $\rightcat{\hat{\black x}}$ is $G$-natural} \\ &&& &&& &&& && \rightcat{ \alpha : {\black G} \to X : {\black g} \mapsto {\black g}\alpha } \text{ such that } (\rightcat\alpha \text{ is } \mathit{natural}) & & & && && {\rightcat\alpha} {\rightcat X}_h & = & G_h {\rightcat\alpha} \\ \end{array} }
( The additional line for [x]g \mapsto (x)g under "\rightcat X as a \textit{module}") shows (a notation introduced by Kelly in (his papers on clubs) ).
Here of course (g is being viewed as an operator), (x as an operand).
In the event that G has (a distinguished element e)
and (an internal composition operation, here denoted merely by juxtaposition),
often one is interested in (structures on the pair \rightcat X,G)
which are related to (the internal structure of G) by (the equations displayed in the panel at the right).
In the case where (G is a group), this is what is meant by (the phrase "group action").
More generally, (structures satisfying such axioms) are called "algebras".
Precedent for denoting the action operation by \tensor is in Section 3 of Im+Kelly.
<hr />
\boxed{ \begin{array} {} && && && x, \gamma &&&& \gamma & \kern1em \\ && && && X \times_{\calC_0} \calC_1 & {} \rlap{\kern-1em \xrightarrow[\kern10em]{} } &&& \calC_1 \\ \gamma && \ast,\gamma && x,\gamma & \rightadj{ \nearrow \rlap{ \text{monic} } } && \rightadj{ \text{p.b.} } && \rightadj{ \nearrow \rlap{ \text{monic} } } \\ (c\downarrow \calC)_0 & \cong & 1 \times (c\downarrow \calC)_0 & \xrightarrow{\textstyle x \times 1} & X_c \times (c\downarrow \calC)_0 & {} \rlap{\kern-1em \xrightarrow[\kern10em]{} } &&& (c\downarrow \calC)_0 \\ && && && \leftcat{ \llap{\text{projection} \mapsto x} \Bigg\downarrow } \rightcat{ \Bigg\downarrow \rlap{ \text{action} \mapsto x\gamma = x X_\gamma} } &&&& \leftcat{ \llap{s} \Bigg\downarrow } \rightcat{ \Bigg\downarrow \rlap{t} } \\ && && && && & {} \rlap{ \kern-3em \leftcat{ \text{p.b. for } s } } \\ && \leftcat{ \llap{\text{projection} \mapsto \ast} \Bigg\downarrow } \phantom{ \rightcat{ \Bigg\downarrow } } && \leftcat{ \llap{\text{projection} \mapsto x} \Bigg\downarrow } \phantom{ \rightcat{ \Bigg\downarrow } } &&&& \leftcat{ \llap{s} \Bigg\downarrow } \phantom{ \rightcat{ \Bigg\downarrow \rlap{t} } } \\ && && && X & {} \rlap{\kern-1em \xrightarrow[\kern10em]{} } &&& \calC_0 \\ && && & \rightadj{ \nearrow \rlap{ \text{monic} } } && \rightadj{ \text{p.b.} } && \llap{\leftcat c} \rightadj{ \nearrow \rlap{ \text{monic} } } \\ && 1 & {} \rlap{ \kern-0.5em \xrightarrow[\textstyle x]{\kern3em} } & X_c & {} \rlap{\kern-1em \xrightarrow[\kern10em]{} } &&& 1 \\ && \ast & \mapsto & x \\ \end{array} }
Given x \in \rightcat X, let c \in \calC_0 be its image in \calC_0.
Then
(the map \hat x : (c\downarrow \calC)_0 \to \rightcat X : \gamma \mapsto \gamma \hat x = x\gamma via the action of \calC on \rightcat X)
is (the <i>orbit</i> of x under the action).
Then the following are equivalent statements:
(\hat x is an equivariant map of right \calC-sets)
iff x(\gamma\gamma') = (x\gamma)\gamma' for all compatible x,\gamma,\gamma'
iff (the associativity axiom holds for the action).
<hr />
Given \rightcat{ \boxed{ \alpha : { \black{\hom c \calC -} } \Rightarrow X } },
a natural transformation from (the covariant regular representation of \calC at c) to (an arbitrary covariant \calC-set \rightcat X),
we have, for each d \in \calC and f \in \hom c \calC d,
\boxed{ \begin{array} {} 1_c & && \rightcat\mapsto && (1_c)\alpha_c = \boxed{\check\alpha} \\ c && \hom c \calC c & \rightcat{ \xrightarrow[\kern3em]{ \textstyle {\black c} \alpha = \alpha_{\black c} } } & {\rightcat X}_c \\ \llap{f} \Bigg\downarrow && \llap{\hom c \calC f} \Bigg\downarrow & \rightcat{ {\black f} \alpha = \alpha_{\black f} } & \Bigg\downarrow \rlap{{\rightcat X}_f} \\ d && \hom c \calC d & \rightcat{ \xrightarrow[\textstyle {\black d} \alpha = \alpha_{\black d}]{\kern3em} } & {\rightcat X}_d \\ (1_c) \hom c \calC f = 1_c f = f & && \rightcat \mapsto && \begin{array}{} (1_c) \hom c \calC f {\rightcat\alpha}_d & \xlongequal{\textstyle (1_c){\rightcat\alpha}_f} & (1_c) {\rightcat\alpha}_c {\rightcat X}_f \\ \llap{ \text{defn } \hom c \calC f } \Vert && \Vert \rlap{ \text{defn } \check{\rightcat\alpha} \text{ -- restriction} } \\ (1_c f) {\rightcat\alpha}_d && {\check{\rightcat\alpha}} {\rightcat X}_f \\ \llap{ 1_c \text{ is an identity} } \Vert && \Vert \rlap{ \text{defn } {\hat{()}}_d \text{ -- extension} } \\ f \boxed{{\rightcat\alpha}_d} && f \boxed{ \big( \hat{ {\check{\rightcat\alpha}} } {\big)}_d } & \kern7em \\ \text{thus: } & \boxed{ \boxed{ \rightcat\alpha = \hat{\check{\rightcat\alpha}} } } \\ \end{array} \\ \end{array} }
On the other hand, given x \in {\rightcat X}_c,
\check{ \hat x } \xlongequal{\textstyle \text{defn } \check{()} } 1_c \big(\hat x\big)_c \xlongequal{\textstyle \text{defn } \big(\hat x\big)_c } x {\rightcat X}_{1_c} \xlongequal{\textstyle {\rightcat X} \text{ preserves identities} } x \rightcat{ 1_{X_{\black c}} } = x
Thus \boxed{ \check{ \hat x } = x }.
Thus finally we have a bijection
\boxed{ \leftcat{ (\check{\rightcat\alpha} = x) \in {\rightcat X}_c} \; { \leftadj{ \xrightarrow[\text{extension}]{\textstyle \hat{()} }} \atop { \rightadj{ \xleftarrow[\textstyle \check{()}]{\text{restriction}} } } } \; \rightcat{ { \hom {\hom c \calC -} {[\calC, \Set]} {\rightcat X} } \ni (\alpha = \hat {\leftcat x}) } }
almost surely the simplest and most basic example of the "Yoneda bijection".
<hr />
To prepare for generalizations, and to justify calling \hat x an "extension",
consider the forgetful functor \boxed{ \rightadj U \mathrel{\rightadj :} \rightcat{G{-}\Set} \mathrel{\rightadj\to} \leftcat\Set \mathrel{\rightadj :} \rightcat X \mathrel{\rightadj\mapsto} \rightcat X \rightadj U \mathrel{\rightadj =} \leftcat X },
where we have followed the common practice of using the same letter X to denote both a G-set, with its action X \times G \to X, and its underlying mere set \leftcat X,
and where \rightcat{G{-}\Set} denotes (the category of G-sets) (not to be confused with G-spots! :-).
G's multiplication \boxed{ G \times G \to G } makes G a right (and also a left) G-set, the (right) (or left) regular representation of G.
The identity element \boxed{e} of G may be specified ("named") via an arrow in \leftcat\Set, \boxed{ \leftadj{ e : \leftcat 1 \to G \rightadj U } }.
The content of the most basic Yoneda bijection may then be expressed by the statement
\boxed{ \leftadj { e : \leftcat 1 \to G \rightadj U \kern1em \text{ is a universal arrow from $\leftcat 1$ to $\rightadj U$.} } }
\boxed{ \begin{array} {} && \leftadj G \\ & \leftadj{ \llap{e} \nearrow} & \Vert & \rightcat{ \searrow \rlap{ \exists! \, \hat{\leftcat x} = \alpha \text{ ; the } \textit{extension} \leftcat{\text{ of } x}} } \\ \leftcat 1 & \leftcat{ {} \rlap{ \kern-1em \xrightarrow[ {}\rlap{\textstyle \kern-3em \forall \, x = \check{\rightcat\alpha} \text{ ; the } \textit{restriction} \rightcat{\text{ of } \alpha}} ]{\kern8em} } } &&& \rightcat X & \kern10em \\ \end{array} }
Here the two arrows originating at the set \leftcat 1 are both arrows in \leftcat\Set, while the arrow \rightcat{{\leftadj G} \to X} is in \rightcat{G{-}\Set}.
What "\leftadj{ e : {\leftcat 1} \to G {\rightadj U} } \kern1em \text{ is a universal arrow from $\leftcat 1$ to $\rightadj U$}" means is:
For every arrow \leftcat{ 1 \xrightarrow[\kern1.5em]{\textstyle x} {\rightcat X} } as at bottom (i.e. for every element \leftcat{x \in X}),
there exists a unique morphism of G-sets G \to \rightcat X as at right which makes the triangle commute.
We denote this unique morphism of G-sets, whose existence and uniqueness is guaranteed by the universal property, by \boxed{ \hat x }.
\newcommand\GSet{{\rightcat{G{-}\Set}}}
A familiar example, for V a vector space over \R, and v \in \rightcat V a vector in it:
\begin{array} {} && \R \\ & \llap{1} \nearrow & \Vert & \searrow \rlap{ \hat v = \rightcat l \text{ ; the $\textit{extension}$ of $v$, the parameterized line through $v$}} \\ \leftcat 1 & {} \rlap{ \kern-1em \xrightarrow[\textstyle v = \check l \rlap{ \text{ ; the $\textit{restriction}$ of $\rightcat l$}}]{\kern10em} } &&& \rightcat V \\ \end{array}
Here of course "1" is being used to denote both a one-element set, say \leftcat{1=\{\emptyset\}}, and the real number usually so denoted.
<hr />
Returning to the more general \rightcat{G{-}\Set} context,
the "bijection between arrows" formulation has a generalization to an adjunction:
Given a group G in \Set, there is an adjunction:
\boxed{ \leftcat{Y \in \Set} \; { { \leftadj{ \xrightarrow[\kern6em]{\textstyle (-\times G)} } } \atop { \rightadj{ \xleftarrow[\textstyle U]{\kern6em} } } } \; \rightcat{G{-}\Set \ni X} }
I.e. the arrows in the box above are functors and we have a natural (in \leftcat Y and \rightcat X) bijection of sets
\boxed{ \begin{array} {} \rightcat\alpha & \rightcat\in & \rightcat{ \hom { \leftadj{ ({\leftcat Y} \times G) } } {(G{-}\Set)} X } \\ && \red{\wr\Vert} \\ \leftcat{ x } & \leftcat\in & \leftcat{ \hom Y \Set {\rightcat X \rightadj U} } \\ \end{array} }
We can depict the relation between \leftcat x and \rightcat\alpha with:
\boxed{ \begin{array} {} && \leftadj{ {\leftcat Y} \times G } \\ & \leftadj{ \llap{ \leftcat Y \times e } \nearrow } & \Vert & \rightcat{ \searrow \rlap{ \exists! \, \hat {\leftcat x} = \alpha \text{ ; the $\textit{extension}$ of $\leftcat x$} }} \\ \leftcat{ Y \cong Y\times 1 } & {} \rlap{ \kern-1em \leftcat{ \xrightarrow[\textstyle \forall \, x = \check{\rightcat\alpha} \rlap{ \text{ ; the $\textit{restriction}$ of $\rightcat\alpha$}}]{\kern11em} } } &&& \rightcat X & \kern10em \\ \end{array} }
\leftadj{ {\leftcat Y} \times G } is the free \rightcat{ G{-}\Set} on the set \leftcat Y;
the unit (just a function) is \leftadj{ \leftcat Y \times e }.
The counit, a morphism of \leftadj G-algebras, at a \rightcat{ G{-}\Set \; X } is just the \leftadj G-action \leftadj{ {\rightcat X \rightadj U} \times G } \mathrel{\rightadj\to} \rightcat X .
The above relations may be perspicaciously viewed be embedding them in the 2-category \CAT of large 1-categories.
\boxed{ \begin{array} {ccccccccc|l} &&&& \calC \calP^\ast &&&& \calC \calP^\ast & \text{Yoneda structure operation } \calP^\ast \text{ on } \calC \\ &&&& \rightcat\Vert &&&& \rightcat\Vert \\ &&&& [\calC, \Set] &&&& [\calC, \Set] & \text{discrete opfibrations (dof) on } \calC \\ &&&& \rightcat\Vert &&&& \rightcat\Vert \\ &&&& [\leftadj G \mathbf B, \Set] &&&& [\leftadj G \mathbf B, \Set] & \text{discrete opfibrations (dof) on } \leftadj G \mathbf B \\ &&&& \rightcat\Vert &&&& \rightcat\Vert \\ \I & {} \rlap{ \kern-1em \rightcat{ \xrightarrow[\kern11em]{\textstyle X} } } &&& \GSet & {} \rlap{ \kern-2em \rightcat{ \xrightarrow[\kern11em]{} } } &&& \GSet \\ & \leftcat{ \llap Y \searrow } & \rightcat{ \raise1ex{ \smash{ \llap{\exists! \alpha} \Bigg\Uparrow } } } & \leftadj{ \nearrow \rlap{\scriptstyle \kern-3em ({\leftcat -} \times G)} } \leftcat{ \raise.3ex{ \smash{ \Bigg\Uparrow \rlap{ \forall x} } } } & \leftadj{ \raise0ex{ \smash{ \Bigg\Uparrow \rlap{\scriptstyle \kern-2em \eta = ({\leftcat -} \times e)} } } } & \rightadj{ \searrow \rlap{\kern-1em U} } & \rightadj{ \raise1ex{ \smash{ \Bigg\Uparrow \rlap{\scriptstyle \kern-2em \epsilon = \text{action}} } } } & \leftadj{ \nearrow \rlap{({\leftcat -} \times G)} } && \red{\text{the adjointness! :-)} } \\ && \leftcat\Set & {} \rlap{ \leftcat{ \kern-1em \xrightarrow{\kern13em} } } &&& \leftcat\Set \\ \end{array} }
The two adjunction triangle equalities are,
first, that for any set \leftcat Y, \leftcat{ y \in Y}, and g \in G,
{\leftcat Y} \times {\leftadj G} \to {\leftcat Y} \times {\leftadj G} : [\leftcat y] \leftadj g \mathrel{\leftadj\mapsto} \big[ [\leftcat y] \leftadj e \big] \leftadj g \mathrel{\rightadj\mapsto} [\leftcat y] \leftadj{(e g)} \xlongequal{\text{left identity axiom for group } \leftadj G} [\leftcat y] \leftadj g \; ,
and second, that for any G-set \rightcat X and x \in \rightcat X \rightadj U,
{\rightcat X \rightadj U} \to {\rightcat X \rightadj U} : x \mathrel{\leftadj\mapsto} [x] \leftadj e \mathrel{\rightadj\mapsto} (x) \leftadj e = x \leftadj e \xlongequal{\text{identity axiom for action of $\leftadj G$ on $X$}} x \; .
Note that \hat{\leftcat x} equals
\begin{array}{} \leftadj{ {\leftcat Y} \times G } & \xrightarrow[\kern3em]{\leftadj{ \leftcat x \times G }} & \leftadj{ {\rightcat X \rightadj U} \times G } & \rightadj{ \xrightarrow[\kern3em]{\rightcat X \rightadj \epsilon} } & \rightcat X \\ [\leftcat y] \leftadj g & \mapsto & [\leftcat {yx}] \leftadj g & \mapsto & (\leftcat {yx}) \leftadj g \end{array}
<hr />
Here are 2-D, 1-D, and 0-D diagrams for the above situation:
\boxed{ \begin{array} {rcc} {} \rlap{ \kern-21em \text{The Element/Orbit Bijection $\boxed{\leftadj\eta \leftrightarrow \rightcat\alpha}$ (i.e., the Yoneda Lemma) for a Representation $\rightcat X$ of a Group $G$} } \\ \hline \\ \text{viewing $\CAT$ as a double category (trivial vertical 1-cells)} && \boxed{ \begin{array} {} \leftcat\calI & \leftadj{ \xrightarrow [\kern2em] {\textstyle e} } & \leftadj G & \rightcat{ \xrightarrow [\kern2em] {\textstyle X} } & \Set \\ \leftcat{\Big\vert} & \llap g \smash{\Bigg\Uparrow} & \leftadj{\Big\vert} & \rightcat{ \smash{\Bigg\Uparrow} \rlap{ \kern-1.9em \boxed{\alpha = \hat\eta} } } & \Big\vert \\ \leftcat\calI & \leftadj{ \xrightarrow [\kern2em] {\textstyle e} } & \llap{\smash{ {\ulcorner g \urcorner} \Bigg\Uparrow }} {\leftadj G} \rlap{\smash{ \leftadj{ \Bigg\Uparrow \boxed{\eta = \check\alpha} } }} & \leftadj{ \xrightarrow [\kern2em] {\textstyle \hom e G {\leftcat -}} } & \Set \\ \leftcat{\Big\vert} && \leftadj{ \llap{1_e} \Big\Uparrow } && \Big\vert \\ \leftcat\calI & \leftcat{ {} \rlap{ \kern-2em \xrightarrow [\textstyle 1] {\kern12em} } } &&& \Set \\ \end{array} } \\ \text{2-D, in the very large 2-category $\CAT$ of large 1-categories} & \kern2em & \boxed{ \begin{array} {} && \leftadj G & \leftadj{ \xlongequal{\kern1em} } & \leftadj G & \leftadj{ \xlongequal{\kern1em} } & \leftadj G \\ & \leftadj{ \llap{e} \nearrow} & \buildrel \textstyle g \over \Leftarrow & \leftadj{ \llap{e} \nearrow } \rlap{\smash{ \kern-1em \Bigg\Uparrow \rlap{ \ulcorner g \urcorner } }} & \smash{ \leftadj{ \llap{1_e} \Big\Uparrow \rlap{\smash{ \kern1.5em \Bigg\Uparrow \rlap{ \boxed\eta } }} } } & \leftadj{ \searrow \rlap{ \kern-2.3em \hom e G - } } & \rightcat{ \buildrel \textstyle {} \rlap{ \kern-1.6em \boxed{\alpha = \hat\eta} } \over \Rightarrow } & \rightcat{ \searrow \rlap X } \\ \leftcat\calI & \leftcat{ \xlongequal{\kern1em} } & \leftcat\calI & {} \rlap{ \kern-1.5em \leftcat{ \xrightarrow[\textstyle 1]{\kern9.5em} } } &&& \leftcat\Set & \leftcat{ \xlongequal{\kern1em} } & \leftcat\Set \\ \end{array} } \\ \\ \text{1-D, in the large category $\Set$ of small sets} && \boxed{ \begin{array} {} && X_e \\ & \rightcat{ \llap{ {\alpha}_{\black e} } \nearrow } && \rightcat{ \nwarrow \rlap{ X_{\black g} } } \\ \hom e G e && g{\rightcat\alpha} && {\rightcat X}_e & \\ & \llap{ \hom e G g } \nwarrow && \rightcat{ \nearrow \rlap{ \alpha_{\black e} } } \\ && \hom e G e \\ & \llap{ \ulcorner g \urcorner } \nwarrow & {\big\uparrow} \rlap{1_e} & \leftadj{ \nearrow \rlap{ \boxed{ \eta = \rightcat{\check\alpha} } } } \\ && 1 \\ \end{array} } \\ \\ \text{0-D, in the small set ${\rightcat X}_{\leftadj e}$ } && \boxed{ g{ \rightcat{ \alpha_{\black e} } } = {\leftadj\eta} g = \rightcat{\check\alpha} g = g \big( \rightcat{ \hat{\check\alpha} } {\big)}_e } \\ \end{array} }
<hr />
\boxed{ \begin{array} {l|c|c} \text{action} & & \text{equalities in } \N & \text{bijections in } \Set \\ \hline \text{one object} & X \times G \to X & \text{orbit-stabilizer equation} ; \text{class equation}& \text{orbit-element bijection} \\ \hline \text{several objects} & X_c \times {\hom c \calC -} \to X_- & & \text{Yoneda lemma} \\ \end{array} }
<hr />
\leftadj{ \llap{ \text{(quotient map of ($\red{\hat x}$ cokernel))} } \nearrow }
\boxed{ \begin{array} {} \rightadj{ \boxed{ \text{Stab}_{\black x} = \text{Aut}_{\black x} } } & \rightadj\rightarrowtail & G & \leftadj{ \displaystyle \mathop\twoheadrightarrow^{\text{quotient}}_{\text{map}} } & \leftadj{ \boxed{ {\black G}{/}\rightadj{ \text{Stab} }_{\black x} } } \\ && \wr\Vert && \red{\wr\Vert} \rlap{ \; ( \leftadj{\text{orbit}} \text{-} \rightadj{\text{stabilizer}} \text{ theorem} ) } \\ \smash{\rightadj{\Bigg\downarrow}} & \smash{ \rightadj{ \raise5ex{\kern-4em \lrcorner} \text{p.b.} } } & 1 \times G & \leftadj{ \buildrel \textstyle \black{\hat x} \over \twoheadrightarrow } & \leftadj{ \boxed{ [\black x] = \black{xG} } } \rlap{ \kern0em \xrightarrow[\smash{\kern12em}]{\textstyle !} } && 1 & \kern0em \\ && \llap{ {\ulcorner x \urcorner} \times G } \Bigg\downarrow & \llap{ \scriptstyle \text{defn. } \red{\hat x} \kern-.6em } \smash{ \red{ \buildrel \textstyle \kern1em \boxed{\hat x} \over \searrow } } \rlap{ \scriptstyle \kern-.5em \text{image fact.} } & \Bigg\downarrow & \smash{ \rightadj{ \raise3ex{\kern-2em \lrcorner} \text{p.b.} } } & \Bigg\downarrow \rlap{ \ulcorner \leftadj{ [\black x] } \urcorner } \\ \rightadj{ \boxed{ \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Equalizer} } } & \rightadj\rightarrowtail & X \times G & \displaystyle \mathop\rightrightarrows^\tensor_{\pi_X} & X {} \rlap{ \kern0em \leftadj{\xrightarrow{\kern5em}} } && \leftadj{ \boxed{ \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Coeq} = \black X {/} \black G = (\black{X//G})\pi_0 } } \\ &&&& x & \leftadj\mapsto & {} \rlap{ \kern-4em \leftadj{ [\black x] } = xG = G\hat x = \hat x \, { \leftadj{ \text{Image} } } } \\ &&&& X {} \rlap{ \rightadj{ \xleftarrow[\textstyle a]{ \kern1em \text{section} \kern1em } } } && \leftadj{ \boxed{ \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Coeq} = \black X {/} \black G = (\black{X//G})\pi_0 } } \\ \end{array} }
\boxed{ \displaystyle X \buildrel \Gsets \over \cong \leftadj{ \sum_{[\black x] \in {\black X}/{\black G}} } \leftadj{ [\black x] } \buildrel \Gsets \over \cong \leftadj{ \sum_{ [\black x] \in {\black X}/{\black G}} } {\black G}{/}\rightadj{ \text{Stab} _{a_{\leftadj{[\black x]}}} } }
(E.g., let G = \langle \{\pm1\}, \times, +1\rangle. Then, with (the evident action given algebraically by multiplication or geometrically by reflection),
\boxed{ X = \{-2,-1,0,1,2\} \cong \{\pm 2\} \leftadj+ \{\pm1\} \leftadj+ \{0\} = [2] \leftadj+ [1] \leftadj+ [0] \cong \{\pm1\}/\rightadj{\{+1\}} \leftadj+ \{\pm1\}/\rightadj{\{+1\}} \leftadj+ \{\pm1\}/\rightadj{\{\pm1\}} } To see a picture of this \{\pm1\}-set, visit https://golem.ph.utexas.edu/category/2021/07/diversity_and_the_mysteries_of.html )
The last general result yields, via |\cdot| : \FinSet_0 \to \N, (the "<a href="https://ncatlab.org/nlab/show/class+equation">class equation</a>", an equality of natural numbers in \N): \boxed{ |X| = \Big|\sum_{[\black x] \in {\black X}/{\black G}} G/{ \rightadj{ \text{Stab} }_{\black x} } \Big| = \sum_{[\black x] \in {\black X}/{\black G}} |G/{ \rightadj{ \text{Stab} }_{\black x} }| = \sum_{[\black x] \in {\black X}/{\black G}} |G|/{ \rightadj{ |\text{Stab} }_{\black x} | } }
which is numerically equivalent to the equality of rational numbers in \Q: \boxed{ |X|/|G| \buildrel \text{above} \over = \sum_{ [\black x] \in {\black X}/{\black G} } 1/{ \rightadj{ | \text{Stab} }_{\black x} | } \buildrel \text{defns} \over = \sum_{ [\black x] \in \pi_0({\black X}//{\black G}) } 1/| \Aut{x} | \buildrel \text{defn.} \over \equiv \boxed{ |X//G| } } , this last (the "<a href="https://ncatlab.org/nlab/show/groupoid+cardinality"><i>groupoid cardinality</i></a>" of the <a href="https://ncatlab.org/nlab/show/action+groupoid"><i>action groupoid</i></a> \boxed{X//G} associated with (the action X_-)). Note the usage of (the full-up equality \boxed{X/G = \pi_0(X//G)}), and that (the groupoid cardinality) can be defined for (any groupoid), not just (action groupoids).
<hr />
<h3>References</h3>
Im+Kelly, A Universal Property of the Convolution Monoidal Structure
https://doi.org/10.1016/0022-4049(86)90005-8
For possible future use: \rightadj{\text{counit of }} ( \leftadj{\text{cokernel}} \text{-} \rightadj{\text{kernel}} \text{ adjunction} ) \rightadj{\text{ is here monic}} ) }