Friday, April 25, 2014

Group actions

If ($G$ is a group) and ($\rightcat X$ is a set), (a (right) group action) is
(a function $\boxed{{\rightcat X} \times G \to \rightcat X}$) which is associative and unital,
meaning that $x(gh) = (xg)h$ and $xe = x$,
where $x\in \rightcat X$, $g,h\in G$ and $e$ is the unit (identity) element of $G$.
For (a left group action), just replace ${\rightcat X} \times G$ with $G \times {\rightcat X}$,
and change the equations to $(gh)x = g(hx)$ and $ex = x$.
For some important examples of group actions, see the post on
The bimodule of sets, functions and permutations.

<hr/>

For (given $G,\rightcat X$) in (a cartesian closed category), there are two other, equivalent, ways of (giving the structure) and (formulating the axioms), given as follows:
 
\[ \boxed{  \begin{array} {cccccccccc|clc|cccccccc|l} &&&  {} \rlap{ \kern-2em \text{Structure} }  &&&&&&&  {} \rlap{ \kern8em \text{Description} }   &&& {} \rlap{ \kern1.5em \text{Equational Axioms, aka Constraints} }   &&&&&&&&  {} \rlap{  \kern3em \text{Comment}  }     \\   &&& &&& &&& &&& &&   {} \rlap{ \kern-1em \text{Identity Axiom} } &&&&  {} \rlap{ \kern-1.5em \text{Associativity Axiom} }     \\     \hline  {\rightcat X}_{-} & : & G  &  \to  &  [\rightcat X,\rightcat X]  & : & g & \mapsto & {\rightcat X}_g  &&&  \text{the monoid $[\rightcat X,\rightcat X]$ as a $\textit{representation}$ of $G$}  &&&  {\rightcat X}_e & = & \rightcat{1_X} && {\rightcat X}_g{\rightcat X}_h & = & {\rightcat X}_{gh}   &  \rightcat X \text{ is functorial}    \\      \hline   {\rightcat -} \tensor {-} & : & {\rightcat X} \times G  &  \to  &  \rightcat X  & : & \langle x,g \rangle & \mapsto & x \tensor g = xg &&&  \text{$\rightcat X$ as a $\textit{module}$ over $G$, i.e. as a $G{-}\textit{module}$}  &&&  xe & = & x  && (xg)h & = & x(gh)   &   \text{the action is associative}    \\     &&&&&& [x]g & \mapsto & (x)g = xg  &&& \text{Kelly's notation for actions of "clubs"}  && &(x)e & = & x && \big((x)g\big)h & = & (x)(gh)    \\    \hline   \rightcat{  \widehat{ \black{(-)} }  } & \rightcat : & \rightcat X  &  \rightcat\to  & \rightcat{ [\black G, X] }  & : & x & \rightcat\mapsto & \rightcat{ \hat{\black x} } &&&  \text{the $G{-}\textit{orbits}$ of $\rightcat X$} :  &&& e \rightcat{ \hat{\black x} } & = & x && h \rightcat{  \widehat{ \black{( g \rightcat{ \hat{\black x} } )} }  } & = & (gh) \rightcat{ \hat{\black x} }      \\    &&& &&& &&& &&  \boxed{    \rightcat{   {\hat{\black x}} : {\black G} \to  X : {\black g} \mapsto {\black g} \rightcat{ \hat{\black x} } = {\black x}{\black g} = {\black x} X_{\black g}  }    } & &&& &&&  \rightcat{ \hat{\black x} } {\rightcat X}_h & = & G_h \rightcat{ \hat{\black x} }   &   \text{each orbit $\rightcat{\hat{\black x}}$ is $G$-natural}  \\     &&& &&& &&& &&   \rightcat{ \alpha : {\black G} \to X  : {\black g} \mapsto {\black g}\alpha   } \text{    such that  } (\rightcat\alpha \text{ is }  \mathit{natural}) & & &  && &&  {\rightcat\alpha} {\rightcat X}_h & = & G_h {\rightcat\alpha}    \\    \end{array}  }  \]
( The additional line for $[x]g \mapsto (x)g$ under "$\rightcat X$ as a $\textit{module}$") shows (a notation introduced by Kelly in (his papers on clubs) ).
Here of course ($g$ is being viewed as an operator), ($x$ as an operand).

In the event that $G$ has (a distinguished element $e$) 
and (an internal composition operation, here denoted merely by juxtaposition), 
often one is interested in (structures on the pair $\rightcat X,G$) 
which are related to (the internal structure of $G$) by (the equations displayed in the panel at the right).
In the case where ($G$ is a group), this is what is meant by (the phrase "group action").
More generally, (structures satisfying such axioms) are called "algebras".
Precedent for denoting the action operation by $\tensor$ is in Section 3 of Im+Kelly.

<hr />

\[  \boxed{    \begin{array} {}  && &&     &&  x, \gamma  &&&&  \gamma  &  \kern1em    \\     &&  &&   &&  X \times_{\calC_0} \calC_1  &  {} \rlap{\kern-1em \xrightarrow[\kern10em]{} }  &&& \calC_1    \\    \gamma  &&  \ast,\gamma   && x,\gamma   & \rightadj{ \nearrow \rlap{ \text{monic} }  } && \rightadj{ \text{p.b.} }  &&  \rightadj{ \nearrow \rlap{ \text{monic} } }     \\     (c\downarrow \calC)_0  &  \cong  &  1 \times (c\downarrow \calC)_0   &  \xrightarrow{\textstyle x \times 1}  &  X_c \times (c\downarrow \calC)_0    &  {} \rlap{\kern-1em \xrightarrow[\kern10em]{} }  &&&  (c\downarrow \calC)_0    \\     &&    &&     &&  \leftcat{ \llap{\text{projection} \mapsto x} \Bigg\downarrow }  \rightcat{ \Bigg\downarrow  \rlap{ \text{action} \mapsto x\gamma = x X_\gamma} }   &&&&  \leftcat{ \llap{s} \Bigg\downarrow }  \rightcat{ \Bigg\downarrow \rlap{t} }    \\     && && && && &  {} \rlap{  \kern-3em \leftcat{ \text{p.b. for } s }  }    \\  &&   \leftcat{ \llap{\text{projection} \mapsto \ast} \Bigg\downarrow }  \phantom{ \rightcat{ \Bigg\downarrow } }   &&    \leftcat{ \llap{\text{projection} \mapsto x} \Bigg\downarrow }  \phantom{ \rightcat{ \Bigg\downarrow } } &&&&   \leftcat{ \llap{s} \Bigg\downarrow }  \phantom{ \rightcat{ \Bigg\downarrow \rlap{t} } }  \\  &&   &&   &&  X  &  {} \rlap{\kern-1em \xrightarrow[\kern10em]{} }  &&& \calC_0    \\   && &&   &  \rightadj{ \nearrow \rlap{ \text{monic} } } &&  \rightadj{ \text{p.b.} }  &&   \llap{\leftcat c}  \rightadj{ \nearrow \rlap{ \text{monic} } }  \\  &&     1  & {} \rlap{ \kern-0.5em \xrightarrow[\textstyle x]{\kern3em} }  &    X_c  &  {} \rlap{\kern-1em \xrightarrow[\kern10em]{} }  &&& 1     \\     &&  \ast  & \mapsto &  x     \\    \end{array}    }   \]

Given $x \in \rightcat X$, let $c \in \calC_0$ be its image in $\calC_0$.
Then
(the map $\hat x : (c\downarrow \calC)_0 \to \rightcat X : \gamma \mapsto \gamma \hat x = x\gamma$ via the action of $\calC$ on $\rightcat X$)
is (the <i>orbit</i> of $x$ under the action).

Then the following are equivalent statements:
($\hat x$ is an equivariant map of right $\calC$-sets) 
iff $x(\gamma\gamma') =  (x\gamma)\gamma'$ for all compatible $x,\gamma,\gamma'$ 
iff (the associativity axiom holds for the action).

<hr />

Given $\rightcat{   \boxed{  \alpha : { \black{\hom c \calC -} } \Rightarrow X  }   }$, 
a natural transformation from (the covariant regular representation of $\calC$ at $c$) to (an arbitrary covariant $\calC$-set $\rightcat X$), 
we have, for each $d \in \calC$ and $f \in \hom c \calC d$,
\[  \boxed{    \begin{array} {}    1_c  &  &&  \rightcat\mapsto  &&  (1_c)\alpha_c = \boxed{\check\alpha}    \\    c  &&  \hom c \calC c  &  \rightcat{   \xrightarrow[\kern3em]{ \textstyle {\black c} \alpha = \alpha_{\black c} }   }  &  {\rightcat X}_c    \\  \llap{f} \Bigg\downarrow  &&  \llap{\hom c \calC f} \Bigg\downarrow  &  \rightcat{   {\black f} \alpha = \alpha_{\black f}   }  &  \Bigg\downarrow \rlap{{\rightcat X}_f}    \\    d  &&  \hom c \calC d  &  \rightcat{   \xrightarrow[\textstyle {\black d} \alpha =  \alpha_{\black d}]{\kern3em}   }  &  {\rightcat X}_d    \\      (1_c) \hom c \calC f = 1_c f =  f  & &&  \rightcat \mapsto  &&  \begin{array}{}    (1_c) \hom c \calC f {\rightcat\alpha}_d & \xlongequal{\textstyle (1_c){\rightcat\alpha}_f}  &  (1_c) {\rightcat\alpha}_c {\rightcat X}_f    \\ \llap{ \text{defn } \hom c \calC f } \Vert  &&  \Vert \rlap{ \text{defn } \check{\rightcat\alpha} \text{  -- restriction} }  \\    (1_c f) {\rightcat\alpha}_d   &&    {\check{\rightcat\alpha}} {\rightcat X}_f    \\  \llap{ 1_c \text{ is an identity} }  \Vert  &&  \Vert \rlap{ \text{defn } {\hat{()}}_d  \text{  -- extension}  }     \\     f \boxed{{\rightcat\alpha}_d}   && f \boxed{ \big( \hat{ {\check{\rightcat\alpha}} }  {\big)}_d }   & \kern7em   \\   \text{thus:  }  & \boxed{  \boxed{ \rightcat\alpha = \hat{\check{\rightcat\alpha}} }  }    \\  \end{array}     \\     \end{array}   }    \]

On the other hand, given $x \in {\rightcat X}_c$,
\[ \check{ \hat x }  \xlongequal{\textstyle \text{defn }  \check{()} }   1_c \big(\hat x\big)_c  \xlongequal{\textstyle \text{defn } \big(\hat x\big)_c }  x {\rightcat X}_{1_c} \xlongequal{\textstyle {\rightcat X}  \text{ preserves identities} } x \rightcat{ 1_{X_{\black c}} } = x \]
Thus $\boxed{ \check{ \hat x } = x }$.

Thus finally we have a bijection
\[ \boxed{  \leftcat{ (\check{\rightcat\alpha} = x) \in {\rightcat X}_c} \; {  \leftadj{ \xrightarrow[\text{extension}]{\textstyle \hat{()} }} \atop { \rightadj{ \xleftarrow[\textstyle \check{()}]{\text{restriction}} } }  } \; \rightcat{ { \hom {\hom c \calC -} {[\calC, \Set]} {\rightcat X} } \ni (\alpha = \hat {\leftcat x}) }   } \]
almost surely the simplest and most basic example of the "Yoneda bijection".

<hr />

To prepare for generalizations, and to justify calling $\hat x$ an "extension", 
consider the forgetful functor $\boxed{ \rightadj U \mathrel{\rightadj :} \rightcat{G{-}\Set} \mathrel{\rightadj\to} \leftcat\Set \mathrel{\rightadj :} \rightcat X \mathrel{\rightadj\mapsto} \rightcat X \rightadj U \mathrel{\rightadj =} \leftcat X }$, 
 where we have followed the common practice of using the same letter $X$ to denote both a $G$-set, with its action $X \times G \to X$, and its underlying mere set $\leftcat X$, 
and where $\rightcat{G{-}\Set}$ denotes (the category of $G$-sets) (not to be confused with G-spots! :-).

$G$'s multiplication $\boxed{ G \times G \to G }$ makes $G$ a right (and also a left) $G$-set, the (right) (or left) regular representation of $G$.
The identity element $\boxed{e}$ of $G$ may be specified ("named") via an arrow in $\leftcat\Set$, $\boxed{ \leftadj{   e : \leftcat 1 \to G \rightadj U   } }$.

The content of the most basic Yoneda bijection may then be expressed by the statement
\[ \boxed{   \leftadj {  e : \leftcat 1 \to G \rightadj U \kern1em \text{ is a universal arrow from $\leftcat 1$ to $\rightadj U$.}  }    }  \]

\[  \boxed{    \begin{array} {}      &&  \leftadj G    \\      & \leftadj{ \llap{e} \nearrow}  &  \Vert  & \rightcat{    \searrow \rlap{ \exists! \, \hat{\leftcat x} = \alpha \text{     ;    the } \textit{extension} \leftcat{\text{ of } x}}   }    \\     \leftcat 1 &  \leftcat{      {} \rlap{ \kern-1em \xrightarrow[ {}\rlap{\textstyle \kern-3em \forall \, x = \check{\rightcat\alpha} \text{     ;    the } \textit{restriction} \rightcat{\text{ of } \alpha}} ]{\kern8em} }    }  &&& \rightcat X    &  \kern10em  \\    \end{array}    }    \]

Here the two arrows originating at the set $\leftcat 1$ are both arrows in $\leftcat\Set$, while the arrow $\rightcat{{\leftadj G} \to X}$ is in $\rightcat{G{-}\Set}$.

What "$\leftadj{   e : {\leftcat 1} \to G {\rightadj U}   } \kern1em \text{ is a universal arrow from $\leftcat 1$ to $\rightadj U$}$" means is:
For every arrow $\leftcat{   1 \xrightarrow[\kern1.5em]{\textstyle x} {\rightcat X}   }$ as at bottom (i.e. for every element $\leftcat{x \in X}$), 
there exists a unique morphism of $G$-sets $G \to \rightcat X$ as at right which makes the triangle commute. 
We denote this unique morphism of $G$-sets, whose existence and uniqueness is guaranteed by the universal property, by $\boxed{ \hat x }$.

$\newcommand\GSet{{\rightcat{G{-}\Set}}}$

A familiar example, for $V$ a vector space over $\R$, and $v \in \rightcat V$ a vector in it:

\[ \begin{array} {}      && \R    \\      & \llap{1} \nearrow  &  \Vert  &  \searrow \rlap{ \hat v = \rightcat l \text{     ;    the $\textit{extension}$ of $v$, the parameterized line through $v$}}    \\    \leftcat 1 & {} \rlap{ \kern-1em \xrightarrow[\textstyle v = \check l \rlap{ \text{     ;    the $\textit{restriction}$ of $\rightcat l$}}]{\kern10em} } &&& \rightcat V    \\    \end{array} \]

Here of course "$1$" is being used to denote both a one-element set, say $\leftcat{1=\{\emptyset\}}$, and the real number usually so denoted.

<hr />

Returning to the more general $\rightcat{G{-}\Set}$ context, 
the "bijection between arrows" formulation has a generalization to an adjunction:
Given a group $G$ in $\Set$, there is an adjunction:
\[ \boxed{  \leftcat{Y \in \Set} \; {   { \leftadj{ \xrightarrow[\kern6em]{\textstyle (-\times G)} } } \atop { \rightadj{ \xleftarrow[\textstyle U]{\kern6em} } }   } \; \rightcat{G{-}\Set \ni X}  }  \]

I.e. the arrows in the box above are functors and we have a natural (in $\leftcat Y$ and $\rightcat X$) bijection of sets

\[ \boxed{    \begin{array} {}  \rightcat\alpha  & \rightcat\in  &   \rightcat{  \hom { \leftadj{ ({\leftcat Y} \times G) } } {(G{-}\Set)} X  }    \\  && \red{\wr\Vert}    \\      \leftcat{ x }  &  \leftcat\in  &  \leftcat{ \hom Y \Set {\rightcat X \rightadj U}  } \\    \end{array}  }   \]

We can depict the relation between $\leftcat x$ and $\rightcat\alpha$ with:

\[ \boxed{    \begin{array} {} && \leftadj{ {\leftcat Y} \times G }     \\ &  \leftadj{   \llap{ \leftcat Y \times e }  \nearrow  }  & \Vert & \rightcat{    \searrow \rlap{ \exists! \, \hat {\leftcat x} = \alpha \text{ ; the $\textit{extension}$ of $\leftcat x$}  }}       \\        \leftcat{ Y \cong Y\times 1 }  &  {} \rlap{ \kern-1em \leftcat{   \xrightarrow[\textstyle \forall \, x = \check{\rightcat\alpha} \rlap{ \text{ ; the $\textit{restriction}$ of $\rightcat\alpha$}}]{\kern11em}   }   } &&& \rightcat X  &  \kern10em    \\ \end{array}    }    \]

$\leftadj{ {\leftcat Y} \times G }$ is the free $\rightcat{ G{-}\Set}$ on the set $\leftcat Y$; 
the unit (just a function) is $\leftadj{ \leftcat Y \times e }$.
The counit, a morphism of $\leftadj G$-algebras, at a $\rightcat{ G{-}\Set \; X }$ is just the $\leftadj G$-action $\leftadj{ {\rightcat X \rightadj U} \times G } \mathrel{\rightadj\to} \rightcat X $.

The above relations may be perspicaciously viewed be embedding them in the 2-category $\CAT$ of large 1-categories.

\[    \boxed{   \begin{array} {ccccccccc|l}   &&&&  \calC \calP^\ast &&&&  \calC \calP^\ast   &  \text{Yoneda structure operation }   \calP^\ast  \text{ on } \calC    \\     &&&&  \rightcat\Vert  &&&&  \rightcat\Vert    \\   &&&&  [\calC, \Set]  &&&&  [\calC, \Set]     &    \text{discrete opfibrations (dof) on } \calC   \\    &&&&  \rightcat\Vert  &&&&  \rightcat\Vert    \\    &&&&  [\leftadj G \mathbf B, \Set]  &&&&  [\leftadj G \mathbf B, \Set]  &    \text{discrete opfibrations (dof) on } \leftadj G \mathbf B \\      &&&&  \rightcat\Vert  &&&&  \rightcat\Vert    \\     \I  &  {} \rlap{ \kern-1em \rightcat{  \xrightarrow[\kern11em]{\textstyle X}  }  }   &&&  \GSet  & {} \rlap{ \kern-2em \rightcat{ \xrightarrow[\kern11em]{} } }  &&&  \GSet     \\      &  \leftcat{  \llap Y \searrow  }  &  \rightcat{  \raise1ex{ \smash{ \llap{\exists! \alpha} \Bigg\Uparrow } }  }  &  \leftadj{  \nearrow  \rlap{\scriptstyle \kern-3em ({\leftcat -} \times G)}   }  \leftcat{ \raise.3ex{  \smash{ \Bigg\Uparrow \rlap{ \forall x}  }  }  }  &  \leftadj{  \raise0ex{ \smash{ \Bigg\Uparrow \rlap{\scriptstyle \kern-2em \eta = ({\leftcat -} \times e)}  }  }  }  &  \rightadj{  \searrow \rlap{\kern-1em U}  }  &  \rightadj{  \raise1ex{ \smash{ \Bigg\Uparrow \rlap{\scriptstyle \kern-2em  \epsilon = \text{action}}  }  }  }  &  \leftadj{  \nearrow  \rlap{({\leftcat -} \times G)}   }   &&  \red{\text{the adjointness! :-)} }  \\    &&  \leftcat\Set  &  {} \rlap{ \leftcat{ \kern-1em \xrightarrow{\kern13em} } }  &&&  \leftcat\Set   \\    \end{array}    }    \]

The two adjunction triangle equalities are, 
first, that for any set $\leftcat Y$, $\leftcat{ y \in Y}$, and $g \in G$, 
\[ {\leftcat Y} \times {\leftadj G}  \to   {\leftcat Y} \times {\leftadj G}  :  [\leftcat y] \leftadj g  \mathrel{\leftadj\mapsto}  \big[ [\leftcat y] \leftadj e \big]  \leftadj g  \mathrel{\rightadj\mapsto}   [\leftcat y] \leftadj{(e g)} \xlongequal{\text{left identity axiom for group } \leftadj G}  [\leftcat y] \leftadj g \;  , \]
and second, that for any  $G$-set $\rightcat X$ and $x \in \rightcat X \rightadj U$, 
\[   {\rightcat X \rightadj U}  \to {\rightcat X \rightadj U}   :   x \mathrel{\leftadj\mapsto}  [x] \leftadj e  \mathrel{\rightadj\mapsto} (x) \leftadj e  =  x  \leftadj e \xlongequal{\text{identity axiom for action of $\leftadj G$ on $X$}} x  \;  .  \]

Note that $\hat{\leftcat x}$ equals
\[ \begin{array}{}  \leftadj{ {\leftcat Y} \times  G }  &   \xrightarrow[\kern3em]{\leftadj{ \leftcat x \times G }}  &  \leftadj{  {\rightcat X \rightadj U} \times G  }  &  \rightadj{ \xrightarrow[\kern3em]{\rightcat X \rightadj \epsilon}  }  &  \rightcat X    \\   [\leftcat y] \leftadj g  &  \mapsto  &  [\leftcat {yx}] \leftadj g  &  \mapsto  &  (\leftcat {yx}) \leftadj g   \end{array}  \]


<hr />

Here are 2-D, 1-D, and 0-D diagrams for the above situation:

\[   \boxed{   \begin{array} {rcc}  {} \rlap{   \kern-21em \text{The Element/Orbit Bijection $\boxed{\leftadj\eta \leftrightarrow \rightcat\alpha}$ (i.e., the Yoneda Lemma) for a Representation $\rightcat X$ of a Group  $G$}   }    \\     \hline   \\     \text{viewing $\CAT$ as a double category (trivial vertical 1-cells)}  &&     \boxed{     \begin{array} {}   \leftcat\calI   &   \leftadj{  \xrightarrow [\kern2em] {\textstyle e}  }   &    \leftadj G    &    \rightcat{  \xrightarrow [\kern2em] {\textstyle X}  }    &    \Set    \\   \leftcat{\Big\vert}  &  \llap g \smash{\Bigg\Uparrow} &   \leftadj{\Big\vert}  &  \rightcat{  \smash{\Bigg\Uparrow} \rlap{ \kern-1.9em \boxed{\alpha = \hat\eta} }  }  &  \Big\vert    \\   \leftcat\calI   &   \leftadj{  \xrightarrow [\kern2em] {\textstyle e}  }   &   \llap{\smash{ {\ulcorner g \urcorner} \Bigg\Uparrow }} {\leftadj G} \rlap{\smash{  \leftadj{ \Bigg\Uparrow \boxed{\eta = \check\alpha} }  }}   &    \leftadj{  \xrightarrow [\kern2em] {\textstyle \hom e G {\leftcat -}}  }    &    \Set    \\     \leftcat{\Big\vert}  &&  \leftadj{ \llap{1_e} \Big\Uparrow }  &&  \Big\vert    \\    \leftcat\calI  &  \leftcat{  {} \rlap{ \kern-2em \xrightarrow [\textstyle 1] {\kern12em} }   }   &&&  \Set    \\     \end{array}     }      \\       \text{2-D, in the very large 2-category $\CAT$ of large 1-categories}   &   \kern2em   &     \boxed{ \begin{array} {} &&  \leftadj G  &  \leftadj{ \xlongequal{\kern1em} }  &   \leftadj G  &  \leftadj{ \xlongequal{\kern1em} }  &  \leftadj G    \\    &   \leftadj{ \llap{e} \nearrow}  &  \buildrel \textstyle g \over \Leftarrow  & \leftadj{ \llap{e} \nearrow } \rlap{\smash{  \kern-1em \Bigg\Uparrow \rlap{ \ulcorner g \urcorner } }}    &   \smash{     \leftadj{   \llap{1_e} \Big\Uparrow  \rlap{\smash{ \kern1.5em \Bigg\Uparrow \rlap{ \boxed\eta } }}   }     }  & \leftadj{   \searrow \rlap{ \kern-2.3em \hom e G - }  }  &  \rightcat{   \buildrel \textstyle {} \rlap{ \kern-1.6em \boxed{\alpha = \hat\eta} } \over \Rightarrow   }  &  \rightcat{  \searrow \rlap X  }    \\     \leftcat\calI  &  \leftcat{ \xlongequal{\kern1em} }  &  \leftcat\calI  &  {} \rlap{  \kern-1.5em \leftcat{ \xrightarrow[\textstyle 1]{\kern9.5em} }  }  &&&  \leftcat\Set  &  \leftcat{ \xlongequal{\kern1em} }  &  \leftcat\Set   \\      \end{array}     }      \\   \\          \text{1-D, in the large category $\Set$ of small sets}   &&    \boxed{    \begin{array} {}  &&  X_e    \\   &  \rightcat{  \llap{ {\alpha}_{\black e} } \nearrow  }  &&  \rightcat{  \nwarrow \rlap{ X_{\black g} }  }   \\    \hom e G e  &&  g{\rightcat\alpha}  &&  {\rightcat X}_e   &     \\     &  \llap{ \hom e G g } \nwarrow  &&  \rightcat{  \nearrow \rlap{ \alpha_{\black e} }  }  \\    && \hom e G e    \\    & \llap{ \ulcorner g \urcorner } \nwarrow  &  {\big\uparrow} \rlap{1_e}  &  \leftadj{   \nearrow \rlap{  \boxed{ \eta = \rightcat{\check\alpha} }  }   } \\    &&    1    \\  \end{array}    }    \\    \\      \text{0-D, in the small set ${\rightcat X}_{\leftadj e}$ }  &&  \boxed{   g{  \rightcat{ \alpha_{\black e} }  } = {\leftadj\eta} g =  \rightcat{\check\alpha} g = g \big( \rightcat{ \hat{\check\alpha} } {\big)}_e  }  \\   \end{array}   }    \] 

<hr />

\[ \boxed{     \begin{array}  {l|c|c}   \text{action}  &  &  \text{equalities in } \N &  \text{bijections in } \Set   \\   \hline  \text{one object}  &  X \times G \to X &  \text{orbit-stabilizer equation} ; \text{class equation}&  \text{orbit-element bijection} \\  \hline \text{several objects}  & X_c \times {\hom c \calC -} \to X_- &    &  \text{Yoneda lemma}   \\  \end{array}     }      \]

<hr />
$ \leftadj{ \llap{ \text{(quotient map of ($\red{\hat x}$ cokernel))} } \nearrow } $

\[  \boxed{  \begin{array} {}  \rightadj{   \boxed{  \text{Stab}_{\black x} = \text{Aut}_{\black x}  }    }  &  \rightadj\rightarrowtail  & G  &  \leftadj{  \displaystyle \mathop\twoheadrightarrow^{\text{quotient}}_{\text{map}}    }   & \leftadj{   \boxed{  {\black G}{/}\rightadj{ \text{Stab} }_{\black x}  }   }   \\   && \wr\Vert  &&  \red{\wr\Vert} \rlap{  \; (  \leftadj{\text{orbit}} \text{-} \rightadj{\text{stabilizer}} \text{ theorem} )  }    \\    \smash{\rightadj{\Bigg\downarrow}}  &   \smash{     \rightadj{ \raise5ex{\kern-4em \lrcorner} \text{p.b.}  }    }    &   1 \times G  &  \leftadj{  \buildrel \textstyle \black{\hat x} \over \twoheadrightarrow  }  &  \leftadj{   \boxed{  [\black x] = \black{xG}  }   }  \rlap{  \kern0em \xrightarrow[\smash{\kern12em}]{\textstyle !}  }  &&  1  & \kern0em   \\     &&  \llap{  {\ulcorner x \urcorner} \times G  } \Bigg\downarrow   &  \llap{ \scriptstyle  \text{defn. } \red{\hat x} \kern-.6em } \smash{   \red{   \buildrel \textstyle \kern1em \boxed{\hat x} \over \searrow   }   } \rlap{ \scriptstyle \kern-.5em \text{image fact.} }    &  \Bigg\downarrow  &  \smash{     \rightadj{ \raise3ex{\kern-2em \lrcorner} \text{p.b.}  }    }  &  \Bigg\downarrow \rlap{ \ulcorner \leftadj{ [\black x] } \urcorner }  \\   \rightadj{  \boxed{   \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Equalizer}   }    }    &  \rightadj\rightarrowtail  &  X \times G  & \displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}  & X {} \rlap{ \kern0em \leftadj{\xrightarrow{\kern5em}}   }  && \leftadj{  \boxed{   \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Coeq} = \black X {/} \black G = (\black{X//G})\pi_0   }    }  \\  &&&&  x & \leftadj\mapsto & {} \rlap{   \kern-4em  \leftadj{ [\black x] } = xG = G\hat x = \hat x \, {  \leftadj{ \text{Image} }  }   }     \\    &&&&  X {} \rlap{  \rightadj{ \xleftarrow[\textstyle a]{ \kern1em \text{section} \kern1em } }  }    &&    \leftadj{  \boxed{   \black{ (\displaystyle \mathop\rightrightarrows^\tensor_{\pi_X}) } \, \text{Coeq} = \black X {/} \black G = (\black{X//G})\pi_0   }    }   \\ \end{array}  }  \]
\[ \boxed{ \displaystyle    X  \buildrel \Gsets \over \cong  \leftadj{ \sum_{[\black x] \in {\black X}/{\black G}} }  \leftadj{ [\black x] }  \buildrel \Gsets \over \cong   \leftadj{  \sum_{ [\black x] \in {\black X}/{\black G}}  } {\black G}{/}\rightadj{ \text{Stab} _{a_{\leftadj{[\black x]}}} }    }     \]
(E.g., let $G = \langle \{\pm1\}, \times, +1\rangle$. Then, with (the evident action given algebraically by multiplication or geometrically by reflection), 
\[   \boxed{  X = \{-2,-1,0,1,2\}  \cong  \{\pm 2\} \leftadj+ \{\pm1\} \leftadj+ \{0\}  =   [2]  \leftadj+ [1] \leftadj+ [0]  \cong   \{\pm1\}/\rightadj{\{+1\}} \leftadj+ \{\pm1\}/\rightadj{\{+1\}} \leftadj+ \{\pm1\}/\rightadj{\{\pm1\}}    }   \]  To see a picture of this $\{\pm1\}$-set,  visit https://golem.ph.utexas.edu/category/2021/07/diversity_and_the_mysteries_of.html   )

The last general result yields, via $|\cdot| : \FinSet_0 \to \N$, (the "<a href="https://ncatlab.org/nlab/show/class+equation">class equation</a>",  an equality of natural numbers in $\N$):  \[ \boxed{  |X| = \Big|\sum_{[\black x] \in {\black X}/{\black G}} G/{ \rightadj{ \text{Stab} }_{\black x} } \Big|  = \sum_{[\black x] \in {\black X}/{\black G}} |G/{ \rightadj{ \text{Stab} }_{\black x} }|  = \sum_{[\black x] \in {\black X}/{\black G}} |G|/{ \rightadj{ |\text{Stab} }_{\black x} | } }   \] 
which is numerically equivalent to the equality of rational numbers in $\Q$:   \[ \boxed{   |X|/|G|   \buildrel \text{above} \over =   \sum_{ [\black x] \in {\black X}/{\black G} } 1/{ \rightadj{ | \text{Stab} }_{\black x} | }  \buildrel \text{defns} \over =   \sum_{ [\black x] \in \pi_0({\black X}//{\black G}) } 1/| \Aut{x} |    \buildrel \text{defn.} \over \equiv  \boxed{ |X//G| }     }  \] , this last (the "<a href="https://ncatlab.org/nlab/show/groupoid+cardinality"><i>groupoid cardinality</i></a>" of the <a href="https://ncatlab.org/nlab/show/action+groupoid"><i>action groupoid</i></a> $\boxed{X//G}$ associated with (the action $X_-$)). Note the usage of (the full-up equality $\boxed{X/G = \pi_0(X//G)}$), and that (the groupoid cardinality) can be defined for (any groupoid), not just (action groupoids).




<hr />

<h3>References</h3>

Im+Kelly, A Universal Property of the Convolution Monoidal Structure
https://doi.org/10.1016/0022-4049(86)90005-8

For possible future use: $\rightadj{\text{counit of }} ( \leftadj{\text{cokernel}} \text{-} \rightadj{\text{kernel}} \text{ adjunction} ) \rightadj{\text{ is here monic}} ) }$

No comments:

Post a Comment