Processing math: 100%

Saturday, April 19, 2014

Grothendieck is fully faithful

2018-04-25

Given (a category A) and (functors X,Y:ASet),
we may form the comma categories 1X and 1Y,
where 1 is (the functor 1:ISet) whose values are (the unit set 1Set) and (its identity function).
The construction 1X is actually a special case of the more general “Grothendieck construction”, which treats functors into Cat (Wikipedia, nlab, C&D section 6).
This construction is actually a functor (with many names): ˉθA=G=GIA=Gr==1?:[A,Set](discrete opfibrations over A)(CATA)X1XdXτ1τAdYY1Y In the following we show that this functor is fully faithful.
In fact, not just two but three homsets are shown to be in bijection,
demonstrating, not only (the full faithfulness of Gr), but also that (X is a left extension over dX of !1).

Theorem. (C&D(6.30), with [[?,CAT]] replaced by [?,Set].)
We have bijections between three homsets as shown in the first row of the table below.
The second row shows (elements of each homset) which correspond (under the bijections),
while the third row shows components of (the transformations) and (the functor).
The bijection labeled (comma) is a special case (for 1X) of (the universal property of 1Y).
The bijection labeled (lan) demonstrates that X is (a left extension over dX of !1).
The composite bijection demonstrates (the full faithfulness of ˉθA=G=GIA=Gr==1?).

homset X[A,Set]Y (lan) !1[(1X),Set]dXY (comma) 1X(CATA)1Y
arrow XτY !1x1(dX0τ)=σ=M0ydXY 1X1τ=dX,σ=M1Y
component Xaτa=(λxXa)σa,xYa 1xτa=σa,x=yMa,xYa a,xa,xτa=a,σa,x=Ma,x
The symbol “x” has several meanings in the table:
in set theory as a bound variable in Xa, in the category Set as an arrow 1Xa, and in the 2-category CAT as the universal 2-cell for 1X.

The relations between τ, σ, and M are mediated by the two equalities in the 2-category CAT shown below.
The equalities in effect show two ways of factoring σ.
(Due to software limitations, some do-it-yourself additions are needed:
In the triangular prism, the three vertical arrows and three vertical 2-cells should be extended to their appropriate sources and targets.)

1X!IM!1YdXx1ydYAXSet1AτYA M0y==x1(dX0τ) 1X!IdXσ1AYSet

Proof:
Suppose αaAa, xXa, and x=xXαXa.
Consider the following display, exhibiting potential diagrams in three different categories.
The upper left arrow is (an arrow in 1X).
The lower right arrow is (a possible arrow in 1Y).
The diamond in the center is (a diagram in Set).
The commutativity of its upper left triangle corresponds to (α being an arrow in 1X).
Its upper right and lower left triangles commute by the definition of σ.
The commutativity of its lower right triangle is in question;
its commuting is shown below to be equivalent to:

  • α being an arrow in 1Y;
  • the naturality of σ at α, x;
  • the naturality of τ at α, x.

a,xXaαXαxdefnτa=(λxXa)σa,xa,xXax1σa,xYaa,xτa=a,σa,x=Ma,xτadefnσa,x?Yαα?Yaa,xτa=a,σa,x=Ma,x


We have

αa,x(1X)a,xx=xXατaxτa=xXατaτ natural at α,xxτa=xτaYαdefn σdefn σσa,x=?σa,xYασ natural at α,xα(a,σa,x=Ma,x)(1Y)(a,σa,x=Ma,x)

which proves

[αa,x(1X)a,x][[α(a,σa,x=Ma,x)(1Y)(a,σa,x=Ma,x)][τ natural at α,x]]

thus, given αaAa, xXa, and defining x=xXα so that αa,x(1X)a,x,
the following are logically equivalent:
  • τ is natural at α, x;
  • σ is natural at α, x;
  • α(a,σa,x=Ma,x)(1Y)(a,σa,x=Ma,x).
The theorem then follows easily (mainly by interchanging universal quantification over (αaAa) and (xXa)).

References “C&D(6.n)” are to section 6 of the paper
Kelly, G. M. (1974). "On clubs and doctrines". Category Seminar (Proceedings Sydney Category Theory Seminar 1972/1973). SLNM. 420. pp. 181–256. doi:10.1007/BFb0063104,
which extends this document by replacing Set with Cat and introducing laxity all over the place.
(The defining equation a,xτa=Ma,x is C&D(6.11); σ is implicit but not explicit in C&D.)


Work in progress:
The theorem as stated occupies an intermediate position between many generalizations and many specializations.
Here are a few of the special cases of the theorem which are of importance.

Example 1. (A=I)
Take A to be the unit category I.
In this case τ amounts to a single function, say f:XY in Set,
while σ amounts to its specification on elements, xσx=(x)f.

Example 2. (A discrete, X,Y constant)
Take A to be a discrete category, so we may identify it with its set of objects, A0=, say, A.
Further, let both X,Y:ASet be constant functors (functions in this case) at, respectively, sets X,YSet.
In the following table we put the special case, for this case, below the general case.

homset X[A,Set]Y (lan) !1[1X,Set]dXY (comma) 1X(CATA)1Y
homset [A,[X,Y]] [A×X,Y][A×X,[1,Y]] (comma) A×X,π0(SetA)A×Y,π0
arrow XτY !1x1(dX0τ)=σ=M0ydXY 1X1τ=dX,σ=M1Y
arrow Aτ[X,Y] A×XσYA×Xσ[1,Y] A×Xπ0,σ=MA×Y
component Xaτa=(λxXa)σa,xYa 1xτa=σa,xYa a,xa,xτa=a,σa,x=Ma,x
component a(XτaY) a,x(1σa,xY) a,xa,xτa=a,σa,x=Ma,x

No comments:

Post a Comment

MathJax 2.7.9