Sunday, April 20, 2014

Galois connections

$ \Newextarrow{\xRightarrow}{5,5}{0x21D2} \begin{array}{} \relationR & \xrightarrow{} & 1 \\ \downarrow & \mkern-4em\raise1ex\lrcorner & \downarrow\rlap\top \\ \setsX\times\settY & \xrightarrow[\displaystyle \relationR]{\smash{\mkern3em}} & \cattwo \\ \end{array} $
[1.1] Here we give (a simple, basic, and ubiquitous example) of (a Galois connection).
This example arises whenever we have (two sets $\setsX$ and $\settY$) with (a relation $\relationR$ between them),
so that we have in (the category $\Set$) (the pullback diagram at right),
where we use (the same letter “$\relationR$”) to denote both (the predicate on $\setsX\times\settY$, viz. $\relationR : \setsX\times\settY \to \cattwo$)
and (the corresponding subset of $\setsX\times\settY$, viz. $\relationR \subseteq \setsX\times\settY$) (the classical definition of “relation”).
$ \begin{array}{} \setsA & \xrightarrow{} & 1 \\ \downarrow & \mkern-2em\raise1ex\lrcorner & \downarrow\rlap\top \\ \setsX& \xrightarrow[\displaystyle \setsA]{\smash{\mkern2em}} & \cattwo \\ \end{array} $ $ \begin{array}{} \settB & \xrightarrow{} & 1 \\ \downarrow & \mkern-2em\raise1ex\lrcorner & \downarrow\rlap\top \\ \settY& \xrightarrow[\displaystyle \settB]{\smash{\mkern2em}} & \cattwo \\ \end{array} $
[1.2] Next we consider (subsets $\source{\setA\subseteq\setX}$ and $\target{\setB\subseteq\setY}$), with (their corresponding predicates on $\setsX$ and $\settY$),
as in (the pullback diagrams in $\Set$ at right).
($\setsA$ and $\settB$) are elements of (the power sets of $\setsX$ and $\settY$), ($\source{\setX\calP \cong [\setX,\cattwo] \equiv [\setX\backslash \cattwo]}$ and $\target{\setY\calP \cong [\setY,\cattwo] \equiv [\setY\backslash \cattwo]}$).
(Each power set) is partially ordered by (inclusion of subsets).

[2.1] In this situation (the following nine statements) are (logically equivalent):

$\setsA \mathrel{\source\subseteq} [\relationR{/}\settB]$ subset inclusion in $\source{\setX\cal P}$
definition of subset inclusion in $\source{\setX\cal P}$
$\source{(\forall\eltx\in\setX)}\big[{_\eltsx\setsA} \Rightarrow {_\eltsx[}\relationR{/}\settB]\big]$
definition of predicate ${_\eltsx[}\relationR{/}\settB]$ on $\setsX$
$\source{(\forall\eltx\in\setX)}\big[{_\eltsx\setsA} \Rightarrow \target{(\forall\elty\in\setY)}[\homst\eltx\relationR\elty{/}\settB_\eltty]\big]$ using relative quantification: $\source{(\forall\eltx\in\setA)} \target{(\forall\elty\in\setB)} \homst \eltx\relationR\elty$ : {everything in $\setsA$} is $\relationR$-related to {everything in $\settB$}
universal property of $\target{(\forall\elty\in\setY)}$
$\source{(\forall\eltx\in\setX)}\target{(\forall\elty\in\setY)}\big[{_\eltsx\setsA} \Rightarrow [\homst\eltx\relationR\elty{/}\settB_\eltty]\big]$
(Fubini for universal quantification) and (right closed adjunctions ($-\land\target{\setB_\elty} \dashv [-{/}\target{\setB_\elty}]$) for $\cattwo$)
$\big(\forall\langle\eltsx,\eltty\rangle \in \setsX\times\settY\big)\big[{_\eltsx\setsA} \land \settB_\eltty \Rightarrow \homst\eltx\relationR\elty\big]$ central, symmetric version of the equivalent statements
version using relative quantification: $\big(\forall \langle\eltsx,\eltty\rangle \in \setsA\times\settB\big) \homst \eltx \relationR \elty$
(Fubini for universal quantification) and (left closed adjunctions ($\source{_\eltx\setA}\land- \dashv [\source{_\eltx\setA}\backslash-]$) for $\cattwo$)
$\target{(\forall\elty\in\setY)}\source{(\forall\eltx\in\setX)}\big[\settB_\eltty \Rightarrow [{_\eltsx\setsA}\backslash\homst\eltx\relationR\elty]\big]$
universal property of $\source{(\forall\eltx\in\setX)}$
$\target{(\forall\elty\in\setY)}\big[\settB_\eltty \Rightarrow \source{(\forall\eltx\in\setX)}[{_\eltsx\setsA}\backslash\homst\eltx\relationR\elty]\big]$ using relative quantification: $\target{(\forall\elty\in\setB)} \source{(\forall\eltx\in\setA)} \homst \eltx\relationR\elty$ : {everything in $\settB$} is $\relationR$-related to {everything in $\setsA$}
definition of predicate $[\setsA\backslash\relationR]_\eltty$ on $\settY$
$\target{(\forall\elty\in\setY)}\big[\settB_\eltty \Rightarrow [\setsA\backslash\relationR]_\eltty\big]$
definition of subset inclusion in $\target{\setY\cal P}$
$\settB \mathrel{\target\subseteq} [\setsA\backslash\relationR]$ subset inclusion in $\target{\setY\cal P}$

$[\setsA\backslash\relationR]_\eltty$ predicate $[\setsA\backslash\relationR]_\eltty$ on $\settY$
definition of predicate $[\setsA\backslash\relationR]_\eltty$ on $\settY$
$\source{(\forall\eltx\in\setX)}[{_\eltsx\setsA}\backslash\homst\eltx\relationR\elty]$
alternative notations for (the internal hom in $\cattwo$)
$\source{(\forall\eltx\in\setX)}[{_\eltsx\setsA} \Rightarrow \homst\eltx\relationR\elty]$
definition of relative quantifier $\source{(\forall\eltx\in\setA})$
$\source{(\forall\eltx\in\setA}) \homst \eltx \relationR \elty$ $\eltty$ is $\relationR$-related to {everything in $\setA$}
[2.2] The functions $\setsA \mapsto \boxed{\setsA\backslash\relationR} \equiv \target\{\target{\elty\in\setY} \mathrel{\target\mid} \source{(\forall\eltx\in\setA}) \homst \eltx \relationR \elty \target\} \equiv \boxed{\overrightarrow{\setsA}}$
and $\settB \mapsto \boxed{\relationR{/}\settB} \equiv \source\{\source{\eltx\in\setX} \mathrel{\source\mid} \target{(\forall\elty\in\setB}) \homst \eltx \relationR \elty \source\} \equiv \boxed{\overleftarrow{\settB}}$
between $\source{\setX\calP}$ and $\target\setY\calP{}$ are called
(the Galois connection between $\source{\setX\calP}$ and $\target\setY\calP{}$ induced by $\relationR$).
(Note: At the right are several equivalent formulations for (the predicate $[\setsA\backslash\relationR]_\eltty$ on $\settY$);
similarly, there are equivalent formulations for (the predicate ${_\eltsx[}\relationR{/}\settB]$ on $\setsX$).)

[2.3] These functions are order-reversing (e.g., $\source{\setA\subseteq\setA'} \Rightarrow \source{\setA'}\backslash\relationR \mathrel{\target\subseteq} \setsA\backslash\relationR$),
thus, (viewing the partially-ordered sets $\source{\setX\calP}$ and $\target\setY\calP{}$ as categories),
(the functions are contravariant functors).
(The logical equivalence of the two outer statements) then proves, in fact is the very definition, that
($\ $($\ $ the contravariant functors $\source-\backslash\relationR = \overrightarrow{()}$ and $\relationR/\target- = \overleftarrow{()}\ $) are adjoint on the right$\ $).


$\settB$ $\setA\backslash\relationR$
$\relationR{/}\setB$
$\setsA$
[3.1] (The relations between these various sets) may be clarified by considering (a geometric example which can actually be visualized).
To do so, print (this web page) on (a sheet of paper).
Consider (the cross-like figure at right),
composed of (fully intersecting horizontal and vertical rectangles) (called, informally, “bars”).
Consider [(the top and bottom edges) of (the vertical bar)];
also [(the left and right edges) of (the horizontal bar)], (i.e., the thicker edges.)
Draw (a simple closed curve) around (i.e., outside of) it,
which touches (each of (those four edges) at (at least one point)).

[3.2] Now suppose (the sets $\setsX$ and $\settY$) are ((the bottom and left edges) of (the sheet of paper));
henceforth in this section ($\setsX$ and $\settY$) will denote (those edges).
Then $\setsX\times\settY$ is {the set of all points on (the sheet of paper)}.
Define (the relation $\relationR$) by $\boxed{\homst \eltx \relationR \elty} \iff \langle\eltx,\elty\rangle$ is inside of the curve, i.e. in its interior,
so ($\relationR$ as a subset of $\setsX\times\settY$) is just (the interior of the curve).
(Writing an “$\relationR$” inside the curve clarifies this point.)

[3.3] Let $\setsA$ be [the projection of (the vertical bar of the cross) onto ($\setsX$, the bottom edge)],
and $\settB$ be [the projection of (the horizontal bar of the cross) onto ($\settY$, the left edge)].
Then $\boxed{\relationR{/}\settB} \equiv \source\{\source{\eltx\in\setX} \mathrel{\source\mid} \target{(\forall\elty\in\setB}) \homst \eltx \relationR \elty \source\}$ is [the projection of (the horizontal bar of the cross) onto ($\setsX$, the bottom edge)],
and $\boxed{\setsA\backslash\relationR} \equiv \target\{\target{\elty\in\setY} \mathrel{\target\mid} \source{(\forall\eltx\in\setsA}) \homst \eltx \relationR \elty \target\}$ is [the projection of (the vertical bar of the cross) onto ($\settY$, the left edge)].


References

@nLab
[KKR] Kasangian, S.; Kelly, G. M.; Rossi, F. (1983). "Cofibrations and the realization of non-deterministic automata". CTGD. 24 (1): 23–46. MR 0702718.
Section 2 of this paper discusses ($\calV$-modules) with (the base $\calV$) (a not-necessarily symmetric monoidal biclosed category);
for the example KKR consider ($\calV= M\calP$ for $M$ a monoid) see their Section 4.
{WAR], R.F.C. Walters, "Categorical Algebras of Relations" (blog post at Walters’ blog)
The following is incomplete work under development.

$ \begin{array}{} && \Set \\ \hline \\ \setsA & \cong & \setsA & \xrightarrow{} & 1 \\ \downarrow && \downarrow & \mkern-2em\raise1ex\lrcorner & \downarrow\rlap\top \\ \setsX\times 1 & \cong & \setsX & \xrightarrow[\smash{\displaystyle \setsA}]{\smash{\mkern2em}} & \cattwo \\ \Vert &&&& \Vert \\ \setsX\times 1 & {}\rlap{\mkern0em\xrightarrow[\textstyle\setsA]{\mkern8em}} &&& \cattwo \\ \end{array} $ [4.1] In (the basic example in section 1) we had two sets, ($\setsX$ and $\settY$), and (a relation $\relationR$ between them),
i.e., (an arrow $\boxed{\relationR:\setsX\to\settY}$ in the bicategory $\boxed\Rel$ of sets, relations, and inclusions of relations; see reference [WAR]).

[4.2] We also had subsets $\source{\setA\subseteq\setX}$ and $\target{\setB\subseteq\setY}$.
These subsets may be considered as relations $\source{\setA:\setX\to1}$ and $\target{\setB:1\to\setY}$
($1$ the one-element set $1=\{0\} = \{\emptyset\} =\{\ast\}$; the arrows in $\Rel$)
by considering ($\source{\setA\subseteq\setX\cong\setX\times1}$) and ($\target{\setB\subseteq\setY\cong 1\times\setY}$), as in the diagram (in $\Set$, for $\setsA$) at right,
where (the same letter “$\setsA$”) has (four different meanings, as shown below (where typical usage is also shown)):

a subset of $\setsX$, viz. $\source{\setA\subseteq\setX}$; a predicate on $\setsX$, viz. $\setsA \mathrel{\source:} \setsX \mathrel{\source\to} \cattwo$;
$\source{\eltx\in\setA}$ $\source{_\eltx\setA}$
a subset of $\setsX\times 1$, viz. $\setsA \subseteq \setsX\times 1$; a predicate on $\setsX\times 1$, viz. $\setA \mathrel{\source:} \setsX\times 1 \mathrel{\source\to} \cattwo$
$\source{\langle\eltx,0\rangle \in \setA}$ $\source{\hom \eltx \setA 0}\rlap{\;.}$
The four $\setsA$'s are defined so that the expressions are logically equivalent,
thus which establishes that the subsets and predicates so defined are in bijection with each other.

$ \begin{array}{} && \Rel \\ \hline \\ && 1 \\ & \llap\setsA\source\nearrow & \Downarrow & \target\searrow\rlap\settB \\ \setsX & {}\mkern-1em\rlap{\xrightarrow[\textstyle\relationR]{\smash{\mkern8em}}} &&& \settY \\ \end{array} $ [4.3] Then (the central, symmetric statement considered in section 2)
may be expressed as [(the gamut diagram) in (the bicategory $\Rel$)] at right, the 2-cell being $$\setA\circ\setB = \{\langle\eltsx,\eltty\rangle\in\setsX\times\settY \mid {_\eltsx\setsA}\land\settB_\eltty\} \subseteq \relationR = \{\langle\eltsx,\eltty\rangle\in\setsX\times\settY \mid \homst \eltx \relationR \elty \} \rlap{\;.}$$
$\Rel \subset \cattwo$-$\Mod$ $\calV$-$\Mod$
$\setX,\setY,\setZ\in\Set$ $\calA,\calB,\calC \in \calV$-$\Cat$
$\relationR,\relationS,\relationT\ $ (relations ($\cattwo$-modules)) between sets $\phi,\psi,\theta\ $ ($\ \calV$-modules) between $\calV$-categories
$\begin{array}{} && \setY \\ & \llap\relationR \nearrow & \Downarrow\rlap{a} & \searrow \rlap\relationS \\ \setsX & {}\rlap{\mkern-1em\xrightarrow[\textstyle \relationT]{\smash{\mkern8em}}} &&& \settZ \\ \end{array}$ $\begin{array}{} && \calB \\ & \llap\phi \nearrow & \Downarrow\rlap{a} & \searrow \rlap\psi \\ \calA & {}\rlap{\mkern-1em\xrightarrow[\smash{\textstyle \theta}]{\smash{\mkern8em}}} &&& \calC \\ \end{array}$

$\Rel$
$\begin{array}{l} \relationR \mathop\Rightarrow\limits^{a''} [\relationT{/}\relationS] \\ \big(\forall\langle\eltx,\elty\rangle\in\setX\times\setY\big) \big[ \hom \eltsx \relationR \elty \Rightarrow \hom \eltsx {[\relationT{/}\relationS]} \elty \big] \\ \big(\forall\langle\eltx,\elty\rangle\in\setX\times\setY\big) \big[ \hom \eltsx \relationR \elty \Rightarrow (\forall\eltz\in\setZ) [\hom\eltsx\relationT\eltz {/} \hom\elty\relationS\eltz] \big] \\ \big(\forall\langle\eltx,\elty\rangle\in\setX\times\setY\big) (\forall\eltz\in\setZ) \big[ \hom \eltsx \relationR \elty \Rightarrow [\hom\eltsx\relationT\eltz {/} \hom\elty\relationS\eltz] \big] \\ \end{array}$ $\setY$ $\begin{array}{l} \relationS \mathop\Rightarrow\limits^{a'} [\relationR\backslash\relationT] \\ \big(\forall\langle\elty,\eltz\rangle\in\setY\times\setZ\big) \big[ \hom \elty \relationS \eltz \Rightarrow \hom \elty {[\relationR\backslash\relationT]} \eltz \big] \\ \big(\forall\langle\elty,\eltz\rangle\in\setY\times\setZ\big) \big[ \hom \elty \relationS \eltz \Rightarrow (\forall\eltsx\in\setsX) [\hom\eltsx\relationR\elty \backslash \hom\eltx\relationT\eltz] \big] \\ \big(\forall\langle\elty,\eltz\rangle\in\setY\times\setZ\big) (\forall\eltx\in\setX) \big[ \hom \elty \relationS \eltz \Rightarrow [\hom\eltsx\relationR\elty \backslash \hom\eltx\relationT\eltz] \big] \\ \end{array}$
$\llap\relationR \nearrow$ $\boxed{\big(\forall\langle\eltx,\elty,\eltz\rangle \in \setX\times\setY\times\setZ\big) \big[ \hom\eltx\relationR\elty \land \hom\elty\relationS\eltz \Rightarrow \hom\eltx\relationT\eltz \big]}$ $\searrow \rlap\relationS$
$\setsX$ $\mkern-3em {}\rlap{\xrightarrow[\smash{\textstyle \relationT}]{\smash{\mkern35em}}}$ $\settZ$
$\begin{array}{l} \big(\forall\langle\eltx,\eltz\rangle\in\setX\times\setZ\big) (\forall\elty\in\setY) \big[ \hom\eltx\relationR\elty \land \hom\elty\relationS\eltz \Rightarrow \hom\eltx\relationT\eltz \big] \\ \big(\forall\langle\eltx,\eltz\rangle\in\setX\times\setZ\big) \big[(\exists\elty\in\setY)(\hom\eltx\relationR\elty \land \hom\elty\relationS\eltz) \Rightarrow \hom\eltx\relationT\eltz \big] \\ \big(\forall\langle\eltx,\eltz\rangle\in\setX\times\setZ\big) \big[ \homst \eltx {(\relationR\circ\relationS)} \eltz \Rightarrow \hom\eltx\relationT\eltz \big] \\ \relationR\circ\relationS \mathop\Rightarrow\limits_{a} \relationT \\ \end{array}$

[Monad-Unit-Condition]
The following seven statements are logically equivalent:
$\smash{ \source{_\eltx\setA} \Rightarrow \raise1ex{\lower2ex{\scriptstyle\eltsx}{\Big(}} \overleftarrow{\overrightarrow\setA}\raise1ex\Big) }$
definition $\smash{ \raise1ex{\lower2ex{\scriptstyle\eltsx}{\Big(}} \overleftarrow{\overrightarrow\setA}\raise1ex\Big) }$
$\source{_\eltx\setA} \Rightarrow \target{(\forall\elty\in\setY)} \bigg[ \homst\eltx\relationR\elty {\bigg/} \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} \bigg]$
universal property of $\target{(\forall\elty\in\setY)}$, or: the right adjoint $[\source{_\eltx\setA} \Rightarrow - ]$ preserves limits
$\smash{ \target{(\forall\elty\in\setY)} \Bigg[ \source{_\eltx\setA} \Rightarrow \bigg[ \homst\eltx\relationR\elty {\bigg/} \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} \bigg] \Bigg] }$
$\smash{ - \land \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} \dashv \Big[ - {\bigg/} \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} \Big] }$
$\target{(\forall\elty\in\setY)} \bigg[ \source{_\eltx\setA} \land \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} \Rightarrow \homst\eltx\relationR\elty \bigg]$
$\source{_\eltx\setA} \land - \dashv [ \source{_\eltx\setA} \backslash - ]$
$\target{(\forall\elty\in\setY)} \bigg[ \smash{\raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} } \Rightarrow [ \source{_\eltx\setA} \backslash \homst\eltx\relationR\elty] \bigg]$
definition $\smash{ \raise1ex{\Big(}\overrightarrow\setA\raise1ex{\Big)_\eltty} }$
$\target{(\forall\elty\in\setY)} \Big[ \source{(\forall\eltxp\in\setX)} [\source{_\eltxp\setA} \backslash\homst\eltxp\relationR\elty] \Rightarrow [ \source{_\eltx\setA} \backslash \homst\eltx\relationR\elty] \Big]$
universal instantiation, or: counit of ${\source{!_X}}^* \dashv \source{ (\forall \eltxp\in\setX) = \Ran_{!_\setsX} = \forall_{!_\setsX} }$
$\radjtop$

References;
Carboni-Street 1986 "Order Ideals in Categories"
https://doi.org/10.2140%2Fpjm.1986.124.275

No comments:

Post a Comment