Friday, September 24, 2021

The categorical comprehension schema

One ingredient in (the categorical comprehension situation), as considered by Lawvere, Street, Walters, et al is (the factorization of functors) in (  (a categorical version) of ( (the classic epi-mono factorization of functions) in (the category of sets) )  ).
That factorization, in $\Set$, uses the notion of image, which in turn uses the logical notion of existence: $(f : X \to Y) \, \leftadj{ \text{Image} } = \{ y\in Y | (\leftadj\exists x\in X)(xf=y) \}$.
Note how comprehension is used in the above definition.

A version of this can be produced in an arbitrary category, using certain standard categorical notions.
(When applied to $\Set$, one does not recover the subset of $Y$ defined above.)
The diagram below, an expansion of 
(the general categorical definition in Theorem 3 of [Street-Walters 1973]), 
shows how this is done.
Here $f : A \to B$ is in general a functor between categories.
But the best introduction to this result is to take $A$ and $B$ to be discrete, i.e. essentially just sets, and $f$ merely a set-theoretic function between them, 
then to interpret the various constructs in that simple situation, i.e. in $\Set$.
Note (the result) 
is NOT even isomorphic to 
(the standard epic-monic factorization of $f$).

\[ \boxed{ \begin{array} {}    & {} \rlap{  \kern-2em \rightadj{ \text{left fiber} }  }   \\   &  \rightadj{ \llap{(2) \;} \boxed{(\black f \downarrow \black b)} }   &   \rightadj{ \xrightarrow [\smash{}] {\textstyle a} }  & A \rlap{ \kern.5em \xrightarrow [\smash{\kern13.5em}] {\textstyle !_A} } &&&& \calI \rlap{ \kern0em \xrightarrow [\smash{\kern6em}] {\textstyle \ulcorner 1 \urcorner} } && & \Set   \\   &&&& \leftcat{ \searrow \rlap{\kern-.1em e \; (5)} }  && \rightadj\nearrow \\    &   \smash{   \rightadj{\llap ! \Bigg\downarrow} } & \smash{ \rightadj{ \llap\beta \Bigg\Downarrow} } & \smash{    \llap f \Bigg\downarrow \rlap{   \kern0em \scriptstyle \red{  { \calE-\calM \atop \text{factorization} }  }  }   }   &&  \rightadj{ \boxed{(\black 1 \downarrow \leftadj k) \; (4)} } \rlap{    \kern0em \smash{   \leftadj{  \Bigg\Downarrow { \text{for the $\Lan$} \atop \textstyle \leftadj{\iota \; (3)} }  }   }    } &&& \smash{ \rightadj{ \Bigg\Downarrow \rlap{ \kern-.25em { \text{for the} \atop \text{comma cat} } } } } & & \smash{\Bigg\Vert}     \\   &&&& \rightadj{ \swarrow \rlap{\kern-.1em p} }   \\     &   \calI & \xrightarrow [\textstyle b \; (1)] {\smash{\kern3em}}  &   B \rlap{    \kern.5em \leftadj{   \xrightarrow [ \textstyle \boxed{ \textstyle \black{(!_A \ulcorner 1 \urcorner)} \Lan_{\black f} = k } \; (3) \; \text{(fiber colimit)} ] {\smash{\kern21em}}  }   } &&&&&& \kern1em & \Set    \\     \kern1em   &&&&  {} \rlap{  \kern-1em B\text{-indexed} \leftadj{ \text{ family of left-fiber colimits} }  } \\    \end{array} } \]

<hr />
-----------
An instructive, very concrete, example of this situation is:

\[ \boxed{ \begin{array} {} & {} \rlap{  \kern-4em \rightadj{ \text{left fiber (pullback)} }  } \\ \text{e.g.:} & \rightadj{  \text{Mike}[\text{Mike}g=\text{M}]  }  & \mapsto & \text{Mike} && \mapsto && \star & \mapsto && 1       \\      & \rightadj{   \llap{(2) \;} \boxed{  \begin{array} {} (\black g \downarrow \black{ \text{M} })  \\  \text{Mike}[\text{Mike}g=\text{M}], \text{etc.}  \\  \end{array}  }    } & \rightadj{   \xrightarrow [\smash{}] { \textstyle \text{names}_{ \black{\text{M}} }  }   } & \boxed{ \begin{array} {}  \text{Names}   \\  \text{Mike, Marty, Mo, Fran, Flo} \\  \end{array} }  \rlap{   \kern.5em \xrightarrow [\smash{\kern24em}] {  \textstyle !_{ \text{Names} }  }   } &&&& \calI \rlap{ \kern0em \xrightarrow [\smash{\kern6em}] {\textstyle \ulcorner 1 \urcorner} } && & \Set     \\     &&&& \leftcat{ \searrow \rlap{\kern-.1em e \; (5)} } && \rightadj\nearrow     \\        & \smash{ \rightadj{\llap ! \Bigg\downarrow} } & \smash{ \rightadj{\Bigg\Downarrow} } & \smash{ \llap g \Bigg\downarrow \rlap{ \kern1em \red{ { \calE-\calM \atop \text{factorization} } } } } && \rightadj{   \boxed{  \begin{array}{} (\black 1 \downarrow \leftadj k) \; (4) \\  \text{M}[0], \text{M}[1], \text{M}[2], \text{F}[0], \text{F}[1] \\  \end{array} }   } \rlap{    \kern0em \smash{   \leftadj{  \Bigg\Downarrow { \text{for the $\Lan$} \atop \textstyle \leftadj{\iota \; (3)} }  }   }    } &&& \smash{ \rightadj{ \Bigg\Downarrow \rlap{ \kern-.25em { \text{for the} \atop \text{comma cat} } } } } & & \smash{\Bigg\Vert}        \\    &&&& \rightadj{ \swarrow \rlap{\kern-.2em p} }     \\    & \calI \rlap{   \xrightarrow [\textstyle \text{M} \; (1)] { \smash{\kern20em} }   }  && \boxed{ \begin{array} {}  \text{Genders}   \\  \text{M, F, N} \\    \end{array} }  \rlap{ \kern.5em \leftadj{ \xrightarrow [ \textstyle \boxed{ \textstyle \black{(!_{\text{Names}} \ulcorner 1 \urcorner)} \Lan_{\black g} = k } \; (3) \; \text{(fiber colimit)} ] {\smash{\kern37em}} } } &&&&&& \kern1em & \Set   \\    &&& {} \rlap{  \leftadj{ \kern0em \black{\text{M}}k = \black 1 + \black 1 + \black 1 = 3 = \{0,1,2\} ; \;  \black{\text{F}}k = \black 1 + \black 1 = 2 = \{0,1\} ;  \; \black{\text{N}}k = \leftadj\emptyset } .}     \\     \kern1em &&&& {} \rlap{ \kern-5em \text{Genders-indexed} \leftadj{ \text{ family of left-fiber colimits} } } \\ \end{array} } \]

The national transformation $\leftadj\iota$ of the $\leftadj\Lan$ deserve a closer look.
The key point is that 
it is (the natural transformation $\leftadj\iota$) that links 
each (individual name) with 
( a specific element of (the sets that are colimits) that form (the image of the $\leftadj\Lan$ in $\Set$) ).

\[  \boxed{    \begin{array} {ccccccccc|cc} \kern1em & \rightadj{   \llap{(2) \;} \boxed{  \begin{array} {} (\black g \downarrow \black{ \text{M} })  \\  \text{Mike}[\text{Mike}g=\text{M}], \text{etc.}  \\  \end{array}  }    } & \rightadj{   \xrightarrow [\smash{}] { \textstyle \text{names}_{ \black{\text{M}} }  }   }  & \boxed{ \begin{array} {}  \text{Names}   \\  \text{Mike, Marty, Mo, Fran, Flo} \\  \end{array} }  \rlap{   \kern.5em \xrightarrow [\smash{\kern6em}] {  \textstyle !_{ \text{Names} }  }   } && \calI \rlap{ \kern0em \xrightarrow [\smash{\kern8em}] {\textstyle \ulcorner 1 \urcorner} } && & \Set   & 1  &  \kern3em  \\    &  & \smash{ \rightadj{\llap ! \searrow} } & \smash{ \rightadj{\bigg\Downarrow} } &   \llap g \searrow   & \smash{ \leftadj{\bigg\Downarrow \rlap\iota} }  &  \leftadj{  \nearrow \rlap{ \boxed{ \textstyle \black{(!_{\text{Names}} \ulcorner 1 \urcorner)} \Lan_{\black g} = k } \; (3) \; \text{(fiber colimit)} }  }   &&& \smash{   \leftadj{\Bigg\downarrow} \rlap{  \raise3ex { \leftadj\iota _{\text{Mike}} }  }   } \\  & && \calI \rlap{   \xrightarrow [\textstyle \text{M} \; (1)] { \smash{\kern12em} }   }  &&  \boxed{ \begin{array} {}  \text{Genders}   \\  \text{M, F, N} \\  \end{array} }  &&&&  \leftadj{ \black{\text{Mike}g}k = \black{\text{M}} k = 3 }  \\   \end{array}   }  \]

Using the notation and setup of the above, we then have

\[ { \black{\text{Mike}} }e  =  (\black{\text{Mike}}g = \text{M}) \big[ \leftadj{  \iota_{\black{\text{Mike}}} : \black 1 \to  \black{ (\text{Mike}g) } k = \black{\text{M}} k = 3  }  \big]   \]

<hr />
Very preliminary draft!! (A work in progress) :

Categorical Comprehension Schema:

Street-Walters:

The general case in Street-Walters requires the following:
Here 
(${\bf T}$ is a (possibly large) category, of "types" or "contexts"),
($P : {\bf T}\op \to \Cat$ is a functor, a "hyperdoctrine"), and
($X\in {\bf T}$ is a "type" or "context").

\[  \boxed{  \begin{array} {} \leftcat{ ({\bf T}\downarrow X) } & \mathop\rightleftarrows\limits^{\leftadj\Omega}_{\rightadj\Theta} & \rightcat{ XP } & \rightcat{=} & \rightcat{  (\calM \downarrow X) } & \rightcat{\approx} & \rightcat{ \hom X {\bf T} \Omega }   \\    \end{array}   } \]

Examples: 

\[ \boxed{ \begin{array} {ccc|ccccccc}     {\bf T} & \ni & \Omega &   \leftcat{ ({\bf T}\downarrow X) } & \mathop\rightleftarrows\limits^{\leftadj\Omega}_{\rightadj\Theta} & \rightcat{ XP } & \rightcat{=} & \rightcat{ (\calM \downarrow X) } & \rightcat{\approx} & \rightcat{ \hom X {\bf T} \Omega } \\ &&&&&   \rightcat{ \text{attributes} }   \\   \hline \Set & \ni & 2 &  \leftcat{ (\Set\downarrow X) } & \mathop\rightleftarrows\limits^{\leftadj\Omega}_{\rightadj\Theta} & \rightcat{ XP } & \rightcat{=} & \rightcat{ ( \text{(monics)} \downarrow X) } & \rightcat{\approx} & \rightcat{ \hom X \Set 2} & \rightcat{=} & \rightcat{ [X,2] }   \\  &&&  \leftcat{ \text{oversets} } && \rightcat{ \text{attributes} } &&  \rightcat{ \text{monics} } && {} \rlap{ \rightcat{ \kern2em \text{predicates} } }     \\      \hline  \Set  &  & \Set  &  \leftcat{ (\Set \downarrow X) } & \mathop\rightleftarrows\limits^{\leftadj\Omega}_{\rightadj\Theta} & \rightcat{ XP } & \rightcat{=} & \rightcat{ (\text{(dofs)} \downarrow X) } & \rightcat{\approx} & \rightcat{ \hom X \SET \Set} & \rightcat{=} & \rightcat{ [X,\Set] }   \\  &&&  \leftcat{ \text{oversets} } && \rightcat{ \text{attributes} } && {} \rlap{ \kern-4em \rightcat{ \text{} } } &&  {} \rlap{ \rightcat{ \kern2em \text{indexed families} } }       \\        \hline  \CAT  & \ni & \Set  &  \leftcat{ (\CAT \downarrow X) } & \mathop\rightleftarrows\limits^{\leftadj\Omega}_{\rightadj\Theta} & \rightcat{ XP } & \rightcat{=} & \rightcat{ ( \text{(dofs) } \downarrow X) } & \rightcat{\approx} & \rightcat{ \hom X \CAT \Set} & \rightcat{=} & \rightcat{ [X,\Set] }   \\  &&&  \leftcat{ \text{overcategories} } && \rightcat{ \text{attributes} } && {} \rlap{ \kern-4em \rightcat{ \text{discrete op-fibrations (dofs)} } } && {} \rlap{ \rightcat{ \kern2em \text{indexed families} } } \\ \end{array} } \]

References:

https://ncatlab.org/nlab/show/hyperdoctrine
https://ncatlab.org/nlab/show/axiom+of+separation

\boxed{ \begin{array} {} \text{ } \\ \text{ } \\ \end{array} } 

\[ 3 = 1+1+1 = {0} + {0} + {0} = {0,1,2} = [2] \]

No comments:

Post a Comment