\[ \leftcat{ \boxed{ \begin{array} {} && \calI & \xrightarrow[\smash{\kern4em}]{\textstyle \boxed{1} \; l} & \calL \\ && \rightadj{ \llap{ \boxed{11} \; ! } {\Bigg\uparrow} } & \leftcat{ \llap{ \boxed{11} \; \lambda } {\Bigg\Downarrow} } & \rightadj{ \llap{ \boxed{0} R } {\Bigg\uparrow} } & \kern2em \llap{ \llap{ \rightcat{\boxed{31} \, \alpha} \kern-.2em } \Downarrow \kern1em } \leftcat{ \searrow \rlap {S \; \boxed{30} } } \\ \leftcat\calI & \xrightarrow[ \smash{ \textstyle \leftcat{\boxed{12}} \; \rightcat r \leftcat{[\lambda]} } ]{ \smash{ \textstyle \text{right lax fiber} } } & \leftcat{ ( l \downarrow {\rightadj R} ) \smash{ \rlap{ \lower2.7ex{ \kern-2.1em \boxed{10} } } } } & \rightcat{ \xrightarrow[ \smash{\textstyle \boxed{11} \; Q=r} ]{} } & \rightcat\calR & \xrightarrow[ \smash{ \textstyle \boxed{0} \; G \; (\text{e.g., }\rightadj R) } ]{\kern8em} & \calC \\ \leftcat\Vert &&&& \rightcat\Vert \\ \leftcat\calI \rlap{ \xrightarrow[ \textstyle \rightcat r ]{\kern24em} } &&&& \rightcat\calR \\ \end{array} } } \]
Given the initial data, the span $\Big( \rightadj{ \boxed{0} \; R : {\leftcat\calL} \leftarrow {} } {\rightcat\calR} \to \calC : { G \; \boxed{0} } \Big) $,
we wish to form
(the right Kan extension $\rightadj{ \boxed{20} \; { \Ran_R {\black G} } : {\leftcat\calL} \to {\black\calC} }$)
of $G$ over $\rightadj R$.
We do this "pointwise".
Given (an object $\leftcat{ \boxed{1} \; l\in\calL }$),
form (its right lax fiber $\leftcat{ \boxed{10} \; ( l \downarrow {\rightadj R} ) }$) as shown in the diagram above.
Then form
(the limit ${\rightadj{ \boxed{20} \; \rightcat{\big( (Q=r) \black G\big)} \lim_{\black\calC} }}$ in $\calC$),
an arrow running from the top left in the above diagram southeast to the somewhat lower right,
together with
(its universal cone $\rightadj{ \boxed{21} \; \pi : \rightcat{\big( (Q=r) \black G\big)} {\rightadj\lim}_{\black\calC} \Rightarrow \rightcat{(Q=r) \black G} } $),
a 2-cell just below the just-mentioned arrow.
\[ \leftcat{ \boxed{ \begin{array} {} && \calI & \xrightarrow[\smash{\kern4em}]{\textstyle \boxed{1} \; l} & \calL \\ && \rightadj{ \llap{ \boxed{11} \; ! } {\Bigg\uparrow} } & \leftcat{ \llap{ \boxed{11} \; \lambda } {\Bigg\Downarrow} } & \rightadj{ \llap{ \boxed{0} R } {\Bigg\uparrow} } & \kern2em \rightadj{ \llap{ \llap{ \boxed{31} \, 1_R \kern-.3em } \Downarrow \kern1em } } \leftcat{ \searrow \rlap {1_\calL \; \boxed{30} } } \\ \leftcat\calI & \xrightarrow[ \smash{ \textstyle \leftcat{\boxed{12}} \; \rightcat r \leftcat{[\lambda]} } ]{ \smash{ \textstyle \text{right lax fiber} } } & \leftcat{ ( l \downarrow {\rightadj R} ) \smash{ \rlap{ \lower2.7ex{ \kern-2.1em \boxed{10} } } } } & \rightcat{ \xrightarrow[ \smash{\textstyle \boxed{11} \; Q=r} ]{} } & \rightcat\calR & \rightadj{ \xrightarrow[ \smash{ \textstyle R \; \boxed{0} } ]{\kern8em} } & \calL \\ \leftcat\Vert &&&& \rightcat\Vert \\ \leftcat\calI \rlap{ \xrightarrow[ \textstyle \rightcat r ]{\kern24em} } &&&& \rightcat\calR \\ \end{array} } } \]
No comments:
Post a Comment