WORK IN PROGRESS!
Here we use the fact that (the cone $\boxed{ \pi : \leftcat{1_{(l \downarrow \rightadj R)} }\lim \Rightarrow \leftcat{1_{(l \downarrow \rightadj R)} }: \leftcat{(l \downarrow \rightadj R)} \to \leftcat{(l \downarrow \rightadj R)} }$) is (a natural transformation).
Hence (the following triangles) commute for all ($\rightcat r \leftcat{[\lambda]}\in \leftcat{(l \downarrow \rightadj R)}$) and ($\rightcat f$ as shown):
\[ \boxed{ \begin{array} {c|cccccc|cccccc} \leftcat{1_{(l \downarrow \rightadj R)} } & \kern0em & \leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)} & {} \rlap{ \kern-1em \xrightarrow[\smash{\kern15em}]{\textstyle \rlap{\pi_{\rightcat r[\lambda]}} } } &&& \rightcat r \leftcat{[\lambda]} & \kern0em & \leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)} & {} \rlap{ \rightcat{ \kern-1em \xrightarrow[\smash{\kern15em}]{\textstyle f } } } &&& \rightcat r \leftcat{[\lambda]} \\ \llap{\pi} \Big\Uparrow & && \llap{ \pi_{\rightcat{ (\black Q\lim_\calR) } \leftcat{ \big[\overline{\lambda}\big] }} } \nwarrow & \pi_{\pi_{\rightcat r \leftcat{[\lambda]}}} & \nearrow \rlap{\pi_{\rightcat r[\lambda]}} && && \llap{ \pi_{\rightcat{ (\black Q\lim_\calR) } \leftcat{ \big[\overline{\lambda}\big] }} } \nwarrow & \pi_{\rightcat f} & \nearrow \rlap{ \pi_{\rightcat r[\lambda]} } \\ \leftcat{ 1_{(l \downarrow \rightadj R)} \lim_{(l \downarrow \rightadj R) } } & & && \leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)} & & && && \leftcat{ 1_{(l \downarrow \rightadj R)} \lim_{(l \downarrow \rightadj R)} } \\ \end{array} } \]
To reiterate, (the two triangles above) commute for all ($\rightcat r \leftcat{[\lambda]}\in \leftcat{(l \downarrow \rightadj R)}$) and ($\rightcat f$ as shown) because ($\rightcat\pi$ is a cone).
Using (naturality of $\pi$ at $\pi_{\rightcat r \leftcat{[\lambda]}}$), i.e. $ \pi_{\pi_{\rightcat r \leftcat{[\lambda]}}}$, plus
(the uniqueness clause in the universal property of $\leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)}$),
we get that $\pi_{\rightcat{ (\black Q\lim_\calR) } \leftcat{ \big[\overline{\lambda}\big] }} = 1_{ \leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)} }$.
This, plus (naturality of $\pi$ at $\rightcat f$), i.e. $\pi_{\rightcat f}$,
gives $\rightcat f = \pi_{\rightcat r[\lambda]}$.
This in turn gives us that
$\leftcat{1_{(l \downarrow \rightadj R)} }\lim_{(l \downarrow \rightadj R)}$ is
(an initial object in ${(l \downarrow \rightadj R)}$},
which is equivalent to
$\rightcat{ (Q\lim_\calR) } \leftcat{ \big[\overline{\lambda}\big] }$ being
(a universal arrow from $\leftcat l$ to $\rightadj\calR$)
which is equivalent to
$\rightcat{ (Q\lim_\calR) }$ being (a left adjoint $\leftcat l \leftadj L$ for $\leftcat l$) with ($\leftcat{ \overline{\lambda} }$ its unit).
<hr />
\[ \boxed{ \begin{array} {c|c|c} \kern2em & \kern2em & \kern2em \\ xx & yy & zz \\ \end{array} } \]
\[ \boxed{ \begin{array} {} && r \\ & \llap{\pi_r} \nearrow & \pi_{\pi_r} & \nwarrow \rlap{\pi_r} \\ \leftcat l\leftadj L & {} \rlap{ \kern-1em \xrightarrow[\pi_{\leftcat l\leftadj L}] {\kern8em} } &&& \leftcat l\leftadj L \\ \end{array} } \]
No comments:
Post a Comment