First note that, for all $x,y$, either $x\lt y$ or $y\lt x$ since $h(x,y)$ has to be one of $x,y$.
Suppose $x,y,z$ are distinct elements such that $x\lt y$, $y\lt z$, and $z\lt x$. This last is equivalent to $h(x,z) = z$.
We write $h(x,z) =??? z$ to indicate this hypothesis is in question.
Then, using the assumption that $h$ is a consistent choice function, we have
\[ \begin{array} {} x & = & h(x,y) & = & h\big( h(x,y),h(y,z) \big) \\ &&&& \Vert \\ &&&& h(x,y,z) \\ &&&& \Vert \\ y & = & h(y,z) & =??? & h\big( h(y),h(x,z) \big) \\ \end{array} \]
contradicting $x,y$ are distinct.
\[ \leftcat{ \boxed{ \begin{array} {cc|ccccc l|ccccccccc} \calJ \rlap{\kern.5em \xrightarrow[\kern15em]{\textstyle G} } &&& && \leftcat{(l\downarrow \calL)} {} \rlap{ \kern.5em \rightcat{ \xrightarrow[\kern39em]{\textstyle Q = r} } } &&& && &&& \calL && \\ \hline &&& && \llap{\boxed{1}\;} G &&& \kern1em & \kern1em & \boxed{2} & G\rightcat Q && \\ &&& && & \rightadj{\nwarrow \rlap\pi} & \rightadj{\boxed{5}} && & \llap{G\lambda} \nearrow & \smash{ \lower1ex{ \boxed{43=2} } } & \rightadj{ \nwarrow \rlap\pi } & \rightadj{\boxed{3}} \\ &&& && && \rightadj{\big((\black G\rightcat Q)\lim_{\leftcat\calL}\big)}[\overline{G\lambda}] && \leftcat{\llap{\boxed{0}\kern1em} l} & {} \rlap{\kern-1em \xrightarrow[\textstyle \exists!\overline{G\lambda} \; \boxed{4}]{\kern12em} } &&& \rightadj{(\black G\rightcat Q)\lim_{\leftcat\calL}} \\ &&& && {} \rlap{ \kern3em \text{a single cone} } &&&& {} \rlap{\kern0em \text{mediating arrow, a morphism of cones} } &&&& \\ \hline &&& \forall \; \boxed{6} \; k[\kappa] & {} \rlap{ \kern-1em \xrightarrow[\kern17em]{\textstyle \forall \mu \; \boxed{7}} } &&& \black G \rlap{\; \boxed{1}} \kern1em & \kern1em & & \boxed{6\rightcat Q} & k & {} \rlap{ \kern-1em \xrightarrow [\kern12em] {\textstyle \mu\rightcat Q = \mu \; \boxed{7}} } &&& \black G\rightcat Q & \boxed{2} \\ &&& & \llap{ \exists! \; \boxed{8'} \; \bar\mu} \searrow && \rightadj{ \nearrow \rlap{\pi} } & & && \llap{\kappa} \nearrow && \llap{\black G\lambda} \nearrow \rlap{\boxed{2}} && \rightadj{ \nearrow \rlap{\pi} } & \\ &&& && \rightadj{ \big((\black G\rightcat Q)\lim_{\leftcat\calL}\big) } [\overline{\black G\lambda}] & \rightadj{\boxed{5}} & && \llap{\boxed{0}\kern1em} l & {} \rlap{ \kern-1em \xrightarrow [\textstyle \exists!\overline{\black G\lambda} \; \boxed{4}] {\smash{\kern12em}} } &&& \rightadj{(\black G\rightcat Q)\lim_{\leftcat\calL}} & \rightadj{\boxed{3}} & \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {c|cc|c|cccc|c|cccccc} \calJ \rlap{ \xrightarrow[\kern12em]{\textstyle \boxed{ \black G = \black G \rightcat Q [\black G \lambda]} } } & \boxed{ (l\downarrow {\rightadj R}) } \rlap{ \rightcat{ \kern.5em \xrightarrow[ \textstyle \kern4.5em \text{faithful} \kern4.5em ]{\textstyle Q=r} } } & & \rightcat\calR \rlap{ \rightadj{ \kern.5em \xrightarrow[\kern7em]{\textstyle R} } } & & \calL && \kern2em &&&& \CAT \\ \hline j & X = j\black G = j \big( \black G \rightcat Q [\black G \lambda] \big) = j \black G \rightcat Q [j \black G \lambda] = \rightcat r [\kappa] && \kern2em j\black G\rightcat Q = \rightcat r \kern1em &&& j\black G\rightcat Q\rightadj R = \rightcat r \rightadj R \\ & &&&& \llap{j \black G \lambda = \kappa} \nearrow & \\ \llap\iota \Bigg\downarrow & \llap{\iota \black G = {}} \Bigg\downarrow \rlap{ {} = \iota \black G \rightcat Q = \rightcat\rho } && \llap{ \iota \black G \rightcat Q \; } \Bigg\downarrow \rlap{ {} = \rightcat\rho} & \kern1em l & {} \rlap{\kern0em \iota \black G = \rightcat\rho} & \Bigg\downarrow \rlap{\iota \black G \rightcat Q\rightadj R = \rightcat\rho \rightadj R } & & & & \boxed{ (l\downarrow {\rightadj R}) } & \rightcat{ \kern.5em \xrightarrow[ \textstyle \text{faithful} ]{\textstyle Q=r} } & \rightcat\calR \\ && && & \llap{j' \black G \lambda = \kappa'} \searrow & \\ j' & X' = j' \black G = j' \big( \black G \rightcat Q [\black G \lambda] \big) = j' \black G \rightcat Q [j' \black G \lambda] = \rightcat{r'} [\kappa'] && j' \black G\rightcat Q = \rightcat{r'} &&& j' \black G\rightcat Q\rightadj R = \rightcat{r'} \rightadj R \\ \hline & \rightadj{ \Bigg\downarrow \rlap{ \kern1em {{\rightcat r} [\kappa]} \mathrel{\rightadj\mapsto} {{(\rightcat r \rightadj R)} [\kappa]} } } &&&&&& &&& \Bigg\downarrow & \rightadj{ \text{p.b.} } & \rightadj{ \Bigg\downarrow\rlap{R} } & \\ \hline \calJ \rlap{ \xrightarrow[\kern12em]{\textstyle \boxed{ \black G = \black G \rightcat Q [\black G \lambda]} } } & \boxed{ (l\downarrow\calL) } \rlap{ \rightcat{ \xrightarrow[ \textstyle \kern10em \text{faithful} \kern6em ]{\textstyle Q=r} } } & & & &\calL && \\ \hline j & X = j\black G = j \big( \black G \rightcat Q [\black G \lambda] \big) = j \black G \rightcat Q [j \black G \lambda] = k[\kappa] &&&&& j\black G\rightcat Q = k \\ & &&&& \llap{j \black G \lambda = \kappa} \nearrow & & & \\ \llap\iota \Bigg\downarrow & \llap{\iota \black G = {} } \Bigg\downarrow \rlap{ {} = \iota \black G \rightcat Q = \mu } & && l & {} \rlap{\kern0em \iota \black G = \mu} & \Bigg\downarrow \rlap{\iota \black G \rightcat Q = \mu} & & & & \boxed{ (l\downarrow\calL) } & \rightcat{ \xrightarrow[ \textstyle \text{faithful} ]{\textstyle Q=r} } & \leftcat\calL \\ && && & \llap{j' \black G \lambda = \kappa'} \searrow & &&&& \llap{!} \downarrow & \Uparrow \rlap\lambda & \Vert \rlap{1_\calL} \\ j' & X' = j' \black G = j' \big( \black G \rightcat Q [\black G \lambda] \big) = j' \black G \rightcat Q [j' \black G \lambda] = k'[\kappa'] &&&&& j' \black G\rightcat Q = k' &&&& \calI & \xrightarrow[\textstyle l]{} & \calL \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {cc|c|ccc|ccccc|c|cc|cccc} \R^2 & \kern2em && \kern2em & \boxed{ (l\downarrow\calL) } \rlap{ \kern.5em \rightcat{ \xrightarrow[ \textstyle \kern2.6em \text{faithful} \kern2.6em ]{\textstyle Q=r} } } & & & & \calL &&9 \kern2em &&11 & \rightcat\calR \rlap{ \xrightarrow[\kern3.5em]{\textstyle \rightadj R } } & \kern0em & \kern0em &\calL &&9 \\ \hline X = \langle X\pi_1,X\pi_2 \rangle = \langle x,y \rangle &&&& \black X = \black X \rightcat Q [\black X \lambda] = k[\kappa] && &&& X\rightcat Q = k &&&& \rightcat r &&&& \rightcat r \rightadj R \\ && && &&& & \llap{X\lambda = \kappa} \nearrow & &&&&& && \llap\kappa \nearrow & \\ && && \Bigg\downarrow \rlap\mu & & \kern2em & l & \mu & \Bigg\downarrow \rlap{\mu\rightcat Q = \mu} &&&& \rightcat{ \llap\rho } \Bigg\downarrow && l & & \rightcat{ \Bigg\downarrow \rlap{\rho \rightadj R} }& \\ & &&&&&& & \llap{X'\lambda = \kappa'} \searrow & &&&& &&& \llap{\kappa'} \searrow & \\ &&&& X' = X' \rightcat Q [X' \lambda] = k' [\kappa'] &&&&& X'\rightcat Q = k' &&&& \rightcat{r'} &&&& \rightcat{r'} \rightadj R \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {cccccc|ccccccc|cccccc} && 1 && \rightadj{\boxed{3}} & \hskip1em & \hskip1em & && 1 && \rightadj{\boxed{3}} & \\ & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & & \hskip1em & \hskip1em & & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & & \\ \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.55em]{\textstyle Q = r} } & \calL & \hskip1em & \hskip1em & \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.5em]{\smash{\textstyle Q = r} } } & \calL \\ {} \rlap{\kern-2em \text{CWM Exercise V.1.1}} && \Bigg\downarrow & \llap{\boxed{0}\;\lambda} \Bigg\Uparrow & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \hskip1em & \hskip1em & \Bigg\downarrow & \rightadj{ {} \rlap{ \kern4em \raise3.6ex{\llap{\boxed{3}\;\pi} \bigg\Uparrow} } } & \rightadj{ \nearrow \rlap{\kern-6.2em \lower1ex{\boxed{3}\;(\black G\rightcat Q)\lim}} } & {} \rlap{ \kern-5.4em \lower4ex{ \bigg\Uparrow \rlap{ \overline{\black G\lambda}\;\boxed{4} } } } & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \kern1em \\ && 1 & \xrightarrow[\textstyle \boxed{0} \; l]{} & \calL & \hskip1em & \hskip1em & 1 \rlap{ \kern1em \xrightarrow[\textstyle \boxed{0} \; l]{\kern21em} } &&&& \calL \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {cccccc|ccccccc|cccccc} && 1 && \rightadj{\boxed{3}} & \hskip1em & \hskip1em & && 1 && \rightadj{\boxed{3}} & \\ & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & & \hskip1em & \hskip1em & & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & & \\ \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.55em]{\textstyle Q = r} } & \calL & \hskip1em & \hskip1em & \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.5em]{\smash{\textstyle Q = r} } } & \calL \\ {} \rlap{\kern-2em \text{CWM Exercise V.1.1}} && \Bigg\downarrow & \llap{\boxed{0}\;\lambda} \Bigg\Uparrow & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \hskip1em & \hskip1em & \Bigg\downarrow & \rightadj{ {} \rlap{ \kern4em \raise3.6ex{\llap{\boxed{3}\;\pi} \bigg\Uparrow} } } & \rightadj{ \nearrow \rlap{\kern-6.2em \lower1ex{\boxed{3}\;(\black G\rightcat Q)\lim}} } & {} \rlap{ \kern-5.4em \lower4ex{ \bigg\Uparrow \rlap{ \overline{\black G\lambda}\;\boxed{4} } } } & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \kern1em \\ && 1 & \xrightarrow[\textstyle \boxed{0} \; l]{} & \calL & \hskip1em & \hskip1em & 1 \rlap{ \kern1em \xrightarrow[\textstyle \boxed{0} \; l]{\kern21em} } &&&& \calL \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {cccccc|ccccccc|cccccc} &&&& \rightcat y &&&&& \\ 1 & \xrightarrow[\kern3em]{\textstyle \boxed{ X = \langle X\pi_1,X\rightcat{\pi_2}\rangle = \langle x,\rightcat y \rangle } } & \leftcat{ {\mathbf R}^2 \rlap{ \lower2.8ex{ \kern-1.3em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.55em]{\textstyle \pi_2} } & \mathbf R & \hskip1em & \hskip1em & \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.5em]{\smash{\textstyle Q = r} } } & \calL \\ && \llap{\pi_1} \Bigg\downarrow \rlap{\boxed{0}} & & & \hskip1em & \hskip1em & \Bigg\downarrow & \rightadj{ {} \rlap{ \kern4em \raise3.6ex{\llap{\boxed{3}\;\pi} \bigg\Uparrow} } } & \rightadj{ \nearrow \rlap{\kern-6.2em \lower1ex{\boxed{3}\;(\black G\rightcat Q)\lim}} } & {} \rlap{ \kern-5.4em \lower4ex{ \bigg\Uparrow \rlap{ \overline{\black G\lambda}\;\boxed{4} } } } & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \kern1em \\ & x & \mathbf R & & & \hskip1em & \hskip1em & 1 \rlap{ \kern1em \xrightarrow[\textstyle \boxed{0} \; l]{\kern21em} } &&&& \calL \\ \hline \\ \hline && 1 && \rightadj{\boxed{3}} & \hskip1em & \hskip1em & && 1 && \rightadj{\boxed{3}} & \\ & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & \smash{ \lower3ex {\rightcat k} } & \hskip1em & \hskip1em & & \llap{!} \nearrow & \red{ \Bigg\downarrow \rlap{ \kern-5em \boxed{\textstyle \boxed{5}\;\big((GQ)\lim_{\leftcat\calL}\big)[\overline{G\lambda}]} } } & \rightadj{ \searrow \rlap{(\black G \rightcat Q)\lim_{\leftcat\calL}} } & & \\ \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle \boxed { G = G\rightcat Q [G\lambda] = \rightcat k[\kappa] }}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.55em]{\textstyle Q = r} } & \calL & \hskip1em & \hskip1em & \calJ & \xrightarrow[\kern3.5em\boxed{1}\kern3.5em]{\smash{\textstyle G}} & \leftcat{ (l \downarrow \calL) \rlap{ \lower2.8ex{ \kern-2em \boxed{0} } } } & \rightcat{ \xrightarrow[\kern3.5em\boxed{0}\kern3.5em]{\smash{\textstyle Q = r} } } & \calL \\ & \text{CWM Exercise V.1.1} & \llap{!} \Bigg\downarrow \rlap{\boxed{0}} & \llap{\boxed{0}\;\lambda} \Bigg\Uparrow & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \hskip1em & \hskip1em & \Bigg\downarrow & \rightadj{ {} \rlap{ \kern4em \raise3.6ex{\llap{\boxed{3}\;\pi} \bigg\Uparrow} } } & \rightadj{ \nearrow \rlap{\kern-6.2em \lower1ex{\boxed{3}\;(\black G\rightcat Q)\lim}} } & {} \rlap{ \kern-5.4em \lower4ex{ \bigg\Uparrow \rlap{ \overline{\black G\lambda}\;\boxed{4} } } } & \Bigg\Vert \rlap{ 1_\calL \; \boxed{0} } & \kern1em \\ && 1 & \xrightarrow[\textstyle \boxed{0} \; l]{} & \calL & \hskip1em & \hskip1em & 1 \rlap{ \kern1em \xrightarrow[\textstyle \boxed{0} \; l]{\kern21em} } &&&& \calL \\ \end{array} } } \]
<hr />
<hr />
\[ \leftcat{ \boxed{ \begin{array} {cc|ccc|cccc} & \kern0em & \kern0em & (l\downarrow\calL) \rlap{ \rightcat{ \xrightarrow[ \textstyle \kern4.5em \text{faithful} \kern4.5em ]{\textstyle Q=r} } } & & & & &\calL &9 \\ \\ \hline &&& \black X = \black X \rightcat Q [\black X \lambda] = k[\kappa] &&&&& k \\ &&& &&&& \llap\kappa \nearrow & \\ &&& \Bigg\downarrow \rlap\mu & && l & \mu & \Bigg\downarrow \rlap\mu & \\ &&&& && & \llap\kappa' \searrow & \\ &&& X' = X' \rightcat Q [X' \lambda] = k' [\kappa'] &&&&& k' \\ \end{array} } } \]
\[ \leftcat{ \boxed{ \begin{array} {cc|ccc|cccc} \calJ \rlap{ \xrightarrow[\kern11em]{\textstyle \boxed{ \black G = \black G \rightcat Q [\black G \lambda]} } } & \kern0em & \kern0em & (l\downarrow\calL) \rlap{ \rightcat{ \xrightarrow[ \textstyle \kern4.5em \text{faithful} \kern4.5em ]{\textstyle Q=r} } } & & & & &\calL &9 \\ \\ \hline j &&& j\black G = j \big( \black G \rightcat Q [\black G \lambda] \big) = j \black G \rightcat Q [j \black G \lambda] &&&&& j\black G\rightcat Q \\ &&& &&&& \llap{j \black G \lambda} \nearrow & \\ \llap\iota \Bigg\downarrow &&& \llap{\iota \black G = {} } \Bigg\downarrow \rlap{ {} = \iota \black G \rightcat Q } & && l & \iota \black G & \Bigg\downarrow \rlap{\iota \black G \rightcat Q} & \\ &&&& && & \llap{j' \black G \lambda} \searrow & \\ j' &&& j' \black G = j' \big( \black G \rightcat Q [\black G \lambda] \big) = j' \black G \rightcat Q [j' \black G \lambda] &&&&& j' \black G\rightcat Q \\ \end{array} } } \]
Naturality at those arrows amounts to showing commutativity of the following diagram in $\SET$:
\[ \boxed{ \begin{array} {} \kern0em & && [\homst d \catD -, {\rightcat X}] && \kern1em \\ & & \llap{ [\homst \delta \catD -, \rightcat\phi] } \swarrow && \searrow \rlap{ \check {()} } \\ & [ \homst {d'} \catD -, \rightcat Y ] &&&& {\rightcat X}_{\leftcat d} \\ && \llap{ \check{()} } \searrow && \swarrow \rlap{ {\rightcat\phi}_{\leftcat\delta} } \\ & && {\rightcat Y}_{ \leftcat{\delta'} } \\ \end{array} } \]
No comments:
Post a Comment