Here we prove it in the category Set.
(The diagram in Set showing the situation) is in (the lower part of the box below); (the functions which implement the isomorphism) are shown (above the diagram).
⟨x,y,c⟩↦⟨x,c⟩↦⟨x,xf,c⟩↦⟨x,c⟩
(fg)−1γ⟨x,c⟩∣xfgZ=cγPBL≅X×Y(Y×ZC)f−1g−1γ⟨x,y,c⟩∣xfY=y∧ygZ=cγ⟨x,c⟩∣xfgZ=cγ(fg)−1γX×ZC→⟨y,c⟩∣ygZ=cγg−1γY×ZC→C↓⌟
A significant example of the use of this result is:
\langle\eltx,\elty\rangle \mapsto \eltx \mapsto \langle\eltx,\eltx\functionf\rangle \mapsto \eltx
\begin{array}{}
\boxed{ \begin{array}{} \\ (\functionf \functionB)\inv \radjtop\\ \eltx \mid \eltx\functionf\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \stackrel {\text{PBL}}\cong &
\boxed{ \begin{array}{} \functionf\inv\setB\\ \functionf\inv\functionB\inv \radjtop\\ \langle\eltx, \elty\rangle \mid \eltx\functionf \xlongequal{\setY} \elty \wedge \elty\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \xrightarrow{\mkern3em} &
\boxed{ \begin{array}{} \setB \\ \functionB\inv \radjtop\\ \elty \mid \elty\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \xrightarrow{\mkern3em} & \bfone\\
&& \big\downarrow & \mkern-1.8em{\raise2ex\hbox{$\lrcorner$}} & \big\downarrow & \mkern-1.8em{\raise2ex\hbox{$\lrcorner$}} & \big\downarrow \rlap\radjtop\\
&& \setX & \xrightarrow[\textstyle \functionf]{} & \setY & \xrightarrow[\textstyle \functionB]{} & \bftwo\\
\end{array}
This demonstrates the naturality of the predicate/subset bijection.
The diagram below is a two-dimensional generalization of the ordinary (one-dimensional) pullback lemma stated above:
\begin{array}{}
&& \boxed{\begin{array}{}
(\setU \times_\setZ \setY) \times_{(\setV\times_\setZ\setY)}(\setV \times_\setZ \setX)\\
\eltu, \elty, \eltv, \eltx \mid \eltu\functions\functiont \xlongequal{\setZ} \elty\functiong \land \langle \eltu\functions,\elty \rangle \xlongequal{\setV\times_\setZ\setY} \langle \eltv, \eltx\functionf \rangle \land \eltv\functiont \xlongequal{\setZ} \eltx\functionf\functiong \\
\eltu,\eltx \mid \eltu\functions\functiont \xlongequal{\setZ} \eltx\functionf\functiong \\
\setU \times_\setZ \setX \\
\end{array} } &
\xrightarrow{} &
\boxed{\begin{array}{}
(\setV\times_\setZ\setY) \times_\setY \setX \\
\eltv, \elty, \eltx \mid \eltv\functiont \xlongequal{\setZ} \elty\functiong \land \elty \xlongequal{\setY} \eltx\functionf \\
\eltv,\eltx \mid \eltv\functiong \xlongequal{\setZ} \eltx\functionf\functiong \\
\setV \times_\setZ \setX \\
\end{array} } & \xrightarrow{} & \setX & \ni & \eltx \\
&& \Bigg\downarrow & \llap {{\raise2ex\hbox{$\lrcorner$}}\mkern1em} \searrow & \Bigg\downarrow & \mkern-2em{\raise2ex\hbox{$\lrcorner$}} & \Bigg\downarrow \rlap\functionf \\
&& \boxed{\begin{array}{}
\setU \times_\setV (\setV\times_\setZ\setY) \\
\eltu,\eltv,\elty \mid \eltu\functions \xlongequal{\setV} \eltv \land \eltv\functiont \xlongequal{\setZ} \elty\functiong \\
\eltu,\elty \mid \eltu\functionf\functiong \xlongequal{\setZ} \elty\functiong \\
\setU \times_\setZ \setY \\
\end{array} } & \xrightarrow{} &
\boxed{\begin{array}{}
\\
\\
\eltv,\elty \mid \eltv\functiont \xlongequal{\setZ} \elty\functiong \\
\setV \times_\setZ \setY \\
\end{array} } & \xrightarrow{} & \setY & \ni & \elty \\
&& \Bigg\downarrow & \mkern-10em{\raise2ex\hbox{$\lrcorner$}} & \Bigg\downarrow & \llap { {\raise2ex\hbox{$\lrcorner$}} \mkern3em } \searrow & \Bigg\downarrow \rlap\functiong \\
&& \setU & \xrightarrow[\textstyle \mkern.8em \functions \mkern.8em]{} & \setV & \xrightarrow[\textstyle \mkern.8em \functiont \mkern.8em]{} & \setZ \\
&&\eltu &&\eltv \\
\end{array}
No comments:
Post a Comment