Loading [MathJax]/jax/element/mml/optable/MiscTechnical.js

Thursday, May 15, 2014

The Pullback Lemma

A key lemma in category theory is the pullback lemma.
Here we prove it in the category Set.
(The diagram in Set showing the situation) is in (the lower part of the box below); (the functions which implement the isomorphism) are shown (above the diagram).
x,y,cx,cx,xf,cx,c (fg)1γx,cxfgZ=cγPBLX×Y(Y×ZC)f1g1γx,y,cxfY=yygZ=cγx,cxfgZ=cγ(fg)1γX×ZCy,cygZ=cγg1γY×ZCC

A significant example of the use of this result is:
\langle\eltx,\elty\rangle \mapsto \eltx \mapsto \langle\eltx,\eltx\functionf\rangle \mapsto \eltx \begin{array}{} \boxed{ \begin{array}{} \\ (\functionf \functionB)\inv \radjtop\\ \eltx \mid \eltx\functionf\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \stackrel {\text{PBL}}\cong & \boxed{ \begin{array}{} \functionf\inv\setB\\ \functionf\inv\functionB\inv \radjtop\\ \langle\eltx, \elty\rangle \mid \eltx\functionf \xlongequal{\setY} \elty \wedge \elty\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \xrightarrow{\mkern3em} & \boxed{ \begin{array}{} \setB \\ \functionB\inv \radjtop\\ \elty \mid \elty\functionB \xlongequal{\bftwo} \radjtop \\ \end{array} } & \xrightarrow{\mkern3em} & \bfone\\ && \big\downarrow & \mkern-1.8em{\raise2ex\hbox{$\lrcorner$}} & \big\downarrow & \mkern-1.8em{\raise2ex\hbox{$\lrcorner$}} & \big\downarrow \rlap\radjtop\\ && \setX & \xrightarrow[\textstyle \functionf]{} & \setY & \xrightarrow[\textstyle \functionB]{} & \bftwo\\ \end{array}

This demonstrates the naturality of the predicate/subset bijection.
The diagram below is a two-dimensional generalization of the ordinary (one-dimensional) pullback lemma stated above:
\begin{array}{} && \boxed{\begin{array}{} (\setU \times_\setZ \setY) \times_{(\setV\times_\setZ\setY)}(\setV \times_\setZ \setX)\\ \eltu, \elty, \eltv, \eltx \mid \eltu\functions\functiont \xlongequal{\setZ} \elty\functiong \land \langle \eltu\functions,\elty \rangle \xlongequal{\setV\times_\setZ\setY} \langle \eltv, \eltx\functionf \rangle \land \eltv\functiont \xlongequal{\setZ} \eltx\functionf\functiong \\ \eltu,\eltx \mid \eltu\functions\functiont \xlongequal{\setZ} \eltx\functionf\functiong \\ \setU \times_\setZ \setX \\ \end{array} } & \xrightarrow{} & \boxed{\begin{array}{} (\setV\times_\setZ\setY) \times_\setY \setX \\ \eltv, \elty, \eltx \mid \eltv\functiont \xlongequal{\setZ} \elty\functiong \land \elty \xlongequal{\setY} \eltx\functionf \\ \eltv,\eltx \mid \eltv\functiong \xlongequal{\setZ} \eltx\functionf\functiong \\ \setV \times_\setZ \setX \\ \end{array} } & \xrightarrow{} & \setX & \ni & \eltx \\ && \Bigg\downarrow & \llap {{\raise2ex\hbox{$\lrcorner$}}\mkern1em} \searrow & \Bigg\downarrow & \mkern-2em{\raise2ex\hbox{$\lrcorner$}} & \Bigg\downarrow \rlap\functionf \\ && \boxed{\begin{array}{} \setU \times_\setV (\setV\times_\setZ\setY) \\ \eltu,\eltv,\elty \mid \eltu\functions \xlongequal{\setV} \eltv \land \eltv\functiont \xlongequal{\setZ} \elty\functiong \\ \eltu,\elty \mid \eltu\functionf\functiong \xlongequal{\setZ} \elty\functiong \\ \setU \times_\setZ \setY \\ \end{array} } & \xrightarrow{} & \boxed{\begin{array}{} \\ \\ \eltv,\elty \mid \eltv\functiont \xlongequal{\setZ} \elty\functiong \\ \setV \times_\setZ \setY \\ \end{array} } & \xrightarrow{} & \setY & \ni & \elty \\ && \Bigg\downarrow & \mkern-10em{\raise2ex\hbox{$\lrcorner$}} & \Bigg\downarrow & \llap { {\raise2ex\hbox{$\lrcorner$}} \mkern3em } \searrow & \Bigg\downarrow \rlap\functiong \\ && \setU & \xrightarrow[\textstyle \mkern.8em \functions \mkern.8em]{} & \setV & \xrightarrow[\textstyle \mkern.8em \functiont \mkern.8em]{} & \setZ \\ &&\eltu &&\eltv \\ \end{array}

No comments:

Post a Comment

MathJax 2.7.9