HTML test:
← → ↓ ↑ ↔
⇐ ⇒ ⇓ ⇑ ⇔
← → ↓ ↑ ↔
⇐ ⇒ ⇓ ⇑ ⇔
×Scaling factors for printing:
TAC: 112%
JPAA: 128%
CTGDC: 124%
P(E)=(nk)pk(1−p)n−k ∫∞−∞e−x2dx.
Aa→B↓b↓cCd→DHTML test:
← → ↓ ↑ ↔
⇐ ⇒ ⇓ ⇑ ⇔
P(E)=(nk)pk(1−p)n−k ∫∞−∞e−x2dx.
Aa→B↓b↓cCd→D\SetXY \rlap{\target{{} \xrightarrow[\mkern28em]{\displaystyle t} {}}} | \homst \setX \Set \setY \target/ \symtY | ||||||||
\elta^4 | \eltb^4 | 0123\mid{} | 4+0 | ||||||
\smash{\llap{s}\Bigg\downarrow} | \elta^3\eltb | \eltb^3\elta | 012\mid3 | 3+1 | |||||
\elta^2\eltb\elta | \eltb^2\elta\eltb | 013\mid2 | |||||||
\elta\eltb\elta^2 | \eltb\elta\eltb^2 | 023\mid1 | |||||||
\eltb\elta^3 | \elta\eltb^3 | 123\mid0 | |||||||
\elta^2\eltb^2,\eltb^2\elta^2 | 01\mid23 | 2+2 | |||||||
\elta\eltb\elta\eltb,\eltb\elta\eltb\elta | 02\mid13 | ||||||||
\elta\eltb\eltb\elta,\eltb\elta\elta\eltb | 03\mid12 | ||||||||
\begin{array}{} \symsX \source\backslash \homst \setX \Set \setY\\ \displaystyle \bigg(\mkern-.35em {\target{{\setY=\{\elta,\eltb\}}} \choose \source{|\setX|=4}} \mkern-.35em\bigg)\\ \end{array} | \begin{array}{}4+0\\ \elta^4\\\end{array} | \begin{array}{}0+4\\ \eltb^4\\\end{array} | \begin{array}{}3+1\\ \elta^3\eltb\\\end{array} | \begin{array}{}1+3\\ \elta\eltb^3\\\end{array} | \begin{array}{}2+2\\ \elta^2\eltb^2\\\end{array} | ||||
4+0 | 3+1 | 2+2 | \symsX \source\backslash \homst \setX \Set \setY \target/ \symtY |
\begin{array}{} \text{$2$-cells} \\ \ssigma,\functionf,\ttau \\ \symsX \mathrel{\source\times} \SetXY \mathrel{\target\times} \symtY \\ \end{array} | \mkern2em\mathop\rightrightarrows\limits^{\symsX \times \text{proj}}_{\symsX \target{\times \text{comp}}} |
\begin{array}{} \source{\text{v-$1$-cells}} \\ \ssigma,\functionf \\ \ssigma,\functionf\ttau \\ \symsX \mathrel{\source\times} \SetXY \\ \end{array} |
\mkern-6em\target{\xrightarrow[\mkern20em]{\displaystyle \symsX \mathrel{\source\times} \functiont}} |
\begin{array}{} \ssigma, \target[\functionf\symtY\target] \\ \symsX \mathrel{\source\times} \target( \SetXY\target/\symtY \target) \\ \end{array} |
||
\smash{\lower8ex{\llap{\scriptstyle \text{proj}\times\symtY} \downdownarrows \rlap{\scriptstyle \source{\text{comp}}\times\symtY}}} | \llap{\scriptstyle \text{proj}} \downdownarrows \rlap{\scriptstyle \source{\text{comp}}} | \smash{\lower8ex{\llap{\scriptstyle \text{proj}} \downdownarrows \rlap{\scriptstyle \source{\text{action}}}}} | ||||
\begin{array}{} \target{\text{h-$1$-cells}} \\ \functionf,\ttau\mkern.5em;\mkern.5em\ssigma\functionf,\ttau \\ \SetXY \mathrel{\target\times} \symtY \\ \end{array} |
\mkern-2em\mathop\rightrightarrows\limits^{\text{proj}}_{\target{\text{comp}}} |
\begin{array}{} && \text{$0$-cells} \\ \scriptstyle \text{proj} \\ \scriptstyle (\symsX \times \text{proj})\text{proj} &&&& \scriptstyle (\symsX \times \target{\text{comp}})\text{proj} \\ \scriptstyle (\text{proj} \times \symtY)\text{proj} &&&& \scriptstyle (\text{proj} \times \symtY)\target{\text{comp}} \\ \functionf & {}\rlap{\mkern-2em \target{\xrightarrow[\mkern17em]{\displaystyle \ttau}}} &&& \functionf\ttau \\ &&&& \llap\ssigma \downarrow \\ \smash{\source{\llap\ssigma \Bigg\downarrow}} && \SetXY && {\displaystyle \ssigma\target(\functionf\ttau\target) \atop \source(\symsX \source\times \target{\text{comp}}\source)\source{\text{comp}}} \\ &&&& \Vert \\ \ssigma\functionf & {}\rlap{\mkern-2em \target{\xrightarrow[\displaystyle \ttau]{\mkern4.5em}}} & \source(\ssigma\functionf\source)\ttau & {}\rlap{\smash{\mkern-2em\xlongequal{\mkern5.5em}}} & \ssigma\functionf\ttau \\ \scriptstyle (\symsX \times \text{proj})\source{\text{comp}} && \scriptstyle (\source{\text{comp}} \times \symtY)\target{\text{comp}} && \scriptstyle \text{comp} \\ \scriptstyle (\source{\text{comp}} \times \symtY)\text{proj} \\ \end{array} | \mkern.5em\target{\xrightarrow[\mkern11em]{\displaystyle \functiont}} |
\begin{array}{} \target[\functionf\symtY\target], \ssigma\target[\functionf\symtY\target] = \target[\ssigma\functionf\symtY\target] \\\SetXY\target/\symtY \\ \end{array} |
||
\smash{\raise8ex{\Bigg\downarrow}} | ||||||
\smash{\raise6ex{\source{\llap\functions\Bigg\downarrow} \rlap{\mathrel{\target\times} \symtY}}} | \source{\llap\functions\Bigg\downarrow} | \searrow \rlap\functionr | \begin{array}{} \symsX\target[\functionf\symtY\target] \\ \symsX\source\backslash \target( \SetXY \target{{/}} \symtY \target) \\ \end{array} |
|||
\wr\Vert | ||||||
\begin{array}{} \source[\symsX\functionf\source], \ttau \\ \source( \symsX\source\backslash\SetXY \source) \mathrel{\target\times} \symtY \\ \end{array} |
\mkern2em\mathop\rightrightarrows\limits^{\text{proj}}_{\target{\text{action}}} |
\begin{array}{}\source[\symsX\functionf\source] \\ \source[\symsX\functionf\source]\ttau = \source[\symsX\functionf\ttau\source] \\ \symsX\source\backslash\SetXY \\ \end{array} |
\mkern-6.5em\xrightarrow[\mkern7em]{} |
\begin{array}{} \source[\symsX\functionf\source]\symtY \\ \source( \symsX\source\backslash\SetXY \source) \target{{/}} \symtY \\ \end{array} |
\cong | \begin{array}{} \source[\symsX\functionf\symtY\source] \\ \symsX \source\backslash \SetXY \target{{/}} \symtY \\ \end{array} |