\[ \leftcat{      \boxed{     \begin{array} {}    &&  \calI & \xrightarrow[\smash{\kern4em}]{\textstyle \boxed{1} \; l}  &  \calL  \\ &&  \rightadj{  \llap{ \boxed{11} \; ! } {\Bigg\uparrow}  }  &  \leftcat{  \llap{ \boxed{11} \; \lambda }   {\Bigg\Downarrow} }   &  \rightadj{  \llap{ \boxed{0} R } {\Bigg\uparrow}   }  &  \kern2em \llap{  \llap{ \rightcat{\boxed{31} \, \alpha} \kern-.2em } \Downarrow \kern1em  }  \leftcat{  \searrow \rlap {S \; \boxed{30} }  }     \\    \leftcat\calI  &  \xrightarrow[  \smash{ \textstyle \leftcat{\boxed{12}} \; \rightcat r \leftcat{[\lambda]} }  ]{  \smash{ \textstyle \text{right lax fiber} }  }  &  \leftcat{     ( l \downarrow {\rightadj R} ) \smash{    \rlap{  \lower2.7ex{   \kern-2.1em \boxed{10}  }  }   }    }  &    \rightcat{   \xrightarrow[ \smash{\textstyle \boxed{11}  \; Q=r}  ]{}   }    &  \rightcat\calR  &  \xrightarrow[  \smash{ \textstyle \boxed{0} \;  G \; (\text{e.g., }\rightadj R) }  ]{\kern8em}  &  \calC       \\   \leftcat\Vert  &&&&  \rightcat\Vert  \\  \leftcat\calI \rlap{ \xrightarrow[ \textstyle \rightcat r ]{\kern24em} }  &&&&  \rightcat\calR    \\ \end{array}     }      } \]
Given the initial data, the span $\Big( \rightadj{  \boxed{0} \; R  : {\leftcat\calL} \leftarrow {} } {\rightcat\calR}  \to \calC :  { G \; \boxed{0} } \Big) $, 
we wish to form 
(the right Kan extension $\rightadj{ \boxed{20} \; { \Ran_R {\black G} } : {\leftcat\calL} \to {\black\calC} }$) 
of $G$ over $\rightadj R$.
We do this "pointwise".
Given (an object $\leftcat{ \boxed{1} \;  l\in\calL }$),
form (its right lax fiber $\leftcat{  \boxed{10} \; ( l \downarrow {\rightadj R} )   }$) as shown in the diagram above.
Then form 
(the limit ${\rightadj{  \boxed{20} \; \rightcat{\big( (Q=r) \black G\big)} \lim_{\black\calC}  }}$ in $\calC$), 
an arrow running from the top left in the above diagram southeast to the somewhat lower right,
together with 
(its universal cone $\rightadj{ \boxed{21} \; \pi : \rightcat{\big( (Q=r) \black G\big)}   {\rightadj\lim}_{\black\calC} \Rightarrow \rightcat{(Q=r) \black G}  } $), 
a 2-cell just below the just-mentioned arrow.
\[ \leftcat{      \boxed{     \begin{array} {}    &&  \calI & \xrightarrow[\smash{\kern4em}]{\textstyle \boxed{1} \; l}  &  \calL  \\ &&  \rightadj{  \llap{ \boxed{11} \; ! } {\Bigg\uparrow}  }  &  \leftcat{  \llap{ \boxed{11} \; \lambda }   {\Bigg\Downarrow} }   &  \rightadj{  \llap{ \boxed{0} R } {\Bigg\uparrow}   }  &  \kern2em \rightadj{     \llap{  \llap{ \boxed{31} \, 1_R  \kern-.3em  } \Downarrow \kern1em  }   }  \leftcat{  \searrow \rlap {1_\calL \; \boxed{30} }  }     \\    \leftcat\calI  &  \xrightarrow[  \smash{ \textstyle \leftcat{\boxed{12}} \; \rightcat r \leftcat{[\lambda]} }  ]{  \smash{ \textstyle \text{right lax fiber} }  }  &  \leftcat{     ( l \downarrow {\rightadj R} ) \smash{    \rlap{  \lower2.7ex{   \kern-2.1em \boxed{10}  }  }   }    }  &    \rightcat{   \xrightarrow[ \smash{\textstyle \boxed{11}  \; Q=r}  ]{}   }    &  \rightcat\calR  &   \rightadj{    \xrightarrow[  \smash{ \textstyle R \; \boxed{0} } ]{\kern8em}    }   &  \calL \\   \leftcat\Vert  &&&&  \rightcat\Vert  \\  \leftcat\calI \rlap{ \xrightarrow[ \textstyle \rightcat r ]{\kern24em} }  &&&&  \rightcat\calR    \\ \end{array}     }      } \]