Pages

Tuesday, January 19, 2021

Limit, colimit, initial, terminal, adjoint

We show various relations between the concepts mentioned in the title.

We begin by recalling one of the definitions of colimit.

If $F : \calJ \to \calC$ is a functor, then its colimit, if it exists, 

is a left extension diagram in the 2-category $\Cat$:

\[ \begin{array}{} && \llap{ (\text{ unit category} = {}) \kern.5em } {\mathcal I}   \\    & \llap ! \nearrow  & \leftadj{ \Big \Uparrow \rlap \iota }   & \leftadj\searrow \rlap{\leftadj{\text{colimit }} F}    \\ \mathcal J  & {} \rlap{ \kern-1em \xrightarrow[\textstyle F]{\kern7em} }  &&& \mathcal C  \\   \end{array} \]


Now specialize to ($\mathcal J = \mathbf 0$, the empty category), 

and ($\boxed{ F = \bigcirc : \mathbf  0 \to \calC }$ the unique (empty) functor).

Then (the above left extension diagram for $(\text{colimit }F)$) specializes to

\[ \begin{array}{} &&  \llap{ (\text{ unit category} = {}) \kern.5em } {(\mathcal I = \mathbf 1)}  \\    & \llap ! \nearrow  & \leftadj{ \Big \Uparrow \rlap \iota }   & \leftadj\searrow \rlap{ \leftadj{\text{colimit }} \bigcirc }   \\     \llap{ (\text{empty category } = {} ) \kern.5em  } {\mathbf 0} &  {} \rlap{    \kern-1em \xrightarrow[\textstyle \bigcirc]{\kern11em} }  &&& \mathcal C  \\  \end{array} \]


There is only one possible natural transformation out of (the empty functor $\bigcirc$), thus we have the bijection (*) in:

\[ \boxed{     \begin{array}{}  \kern7.5em  & \hom \bigcirc  {[\mathbf 0, \calC]} {!c}  &  \buildrel \text{(*)} \over \cong  &  \mathbf 1  & \kern12em   \\  &  \llap{\text{definition (colimit $\bigcirc$)}} {\wr\Vert}    &&     {\wr\Vert} \rlap{\text{ definition (initial object = $\bot$)}}   \\  &   {} \rlap{ \kern-3.8em \hom {\text{(colimit $\bigcirc$)}} \calC c }   &&   \hom \bot \calC c   \\ \end{array}     }  \]

Since this is true (for all $c \in \calC$), we have $\boxed{  \big( \text{colimit } (\bigcirc : \mathbf  0 \to \calC) \big) \cong \bot  }$, i.e., 

(an initial object $\bot$) is (a colimit of (the empty functor)). 

Note that the above proof only needed the bijection (*) and the definitions of colimit and initial object.

This generalizes the order-theoretic result that, in a preorder, 

 (a least upper bound, i.e. supreum, for the empty subset) is (a bottom).

For an example of non-uniqueness, 

consider a set with two or more elements with the indiscrete (chaotic) preorder, which is certainly not antisymmetric, thus is a preorder but not a partial order.

For such a preorder, every element is both a lub($\emptyset$) and a bottom.

As to the existence of <i>minimal</i> elements, <a href="https://en.wikipedia.org/wiki/Greatest_element_and_least_element">Wikipedia</a> gives two definitions, one for preorders and one for partial orders.

Per the preorder definition, which is the appropriate definition here, 

<i>EVERY</i> element is minimal.

Per the (more familiar) definition for partial orders (which makes sense even for preorders, even if it is not the proper definition in those cases), 

<i>NO</i> element is minimal.


<hr />


In addition to (initial objects) being (colimits of the smallest possible functor into $\mathcal C$, $\bigcirc : \mathbf 0 \to \mathcal C$),

(initial objects) are also (limits of the largest possible functor into $\mathcal C$,  the identity functor $1_{\mathcal C} : \mathcal C \to \mathcal C$), 

generalizing the fact that in pre-orders, bottoms are infima, i.e. greatest lower bounds, for the entire pre-order.


(A bottom $\leftadj\bot$ in $\mathcal C$) has (a unique arrow $\boxed{ \bigcirc_c : \leftadj\bot \to c }$) into (each object $c \in \calC$).


(Note that we use the same symbol, $\bigcirc$, both

externally, in $\CAT$, to denote (the unique arrow (a functor)) from (the initial object $\mathbf 0$) to (an arbitrary object, a category, $\mathcal C$) in $\CAT$, and 

internally, in $\calC$, to denote (the unique arrow) from (the initial object $\bot$) to (an arbitrary object $c$) in (a given category $\mathcal C$).)

These provide (the projection arrows) necessary to make $\leftadj\bot$ (a limit for the functor $1_{\calC}$).

Two key facts about $\bigcirc$ follow from (the uniqueness condition) in (the definition of initiality): since ($\leftadj\bot$ is initial), 

$\bullet$ There is one and only one endoarrow (the unique self-map) $\leftadj\bot \to \leftadj\bot$, 

thus $\boxed{  ( \bigcirc_{\leftadj\bot} = 1_{\leftadj\bot} ) : \leftadj\bot \to \leftadj\bot  }$.


$\bullet$ The family of arrows $\{\bigcirc_c : \leftadj\bot \to c\}_{c \in \calC}$ collectively form a cone $\boxed{ \bigcirc : {\leftadj\bot}\Delta \Rightarrow 1_{\calC} }$;

the transformation $\bigcirc$  is natural since $\bigcirc_c \gamma = \bigcirc_{c'}$ for any $\gamma : c \to {c'}$ in $\calC$.

\[ \begin{array}{} && \leftadj\bot   \\   & \llap{\bigcirc_c} \swarrow  &&   \searrow \rlap{\bigcirc_{c'}}   \\    c & {}\rlap{ \kern-.5em \xrightarrow[\textstyle \gamma]{\kern7em} } &&& {c'}   \end{array} \]

Thus the family of arrows $\{\bigcirc_c : \leftadj\bot \to c\}_{c \in \calC}$ 

is closed under post-composition, i.e., is a one-sided ideal.


<hr />

To show ($\boxed{ {\leftadj\bot} [\bigcirc] = <\leftadj\bot, {\leftadj\bot}\Delta \buildrel \bigcirc \over \Rightarrow 1_{\calC}>} $ is a limit for $1_{\calC}$), 

we must show (${\leftadj\bot} [\bigcirc]$ is terminal in $(\Delta \downarrow \ulcorner 1_\calC \urcorner)$, the category of cones to $1_\calC$),

i.e. the comma category arising from the displayed cospan in $\CAT$:

\[\begin{array}{cc|cccccccc|c|cccc}  &&&&  &&  \boxed{ (\Delta \downarrow \ulcorner 1_\calC \urcorner) } \rlap{ \text{ ( = cones to $1_\calC$) } }     \\   &&&&    & \llap b \swarrow & & \searrow \llap !     \\   &&&&    \calC &&  \buildrel \textstyle \tau \over \Rightarrow && \mathcal I     \\   &&&&  & \llap{\Delta} \searrow  &   \CAT   &   \swarrow \rlap{ \ulcorner 1_\calC \urcorner }   \\   &&&&   &&  [\calC, \calC]  \\  \\    \hline    &&&& &&&&&&  \kern6em & {\leftcat b}   \\   {\leftcat b}[\tau] &&&&  & {\leftcat b} \Delta  &  \xrightarrow[\kern2em]{\textstyle \tau}  &  1_\calC  & &  &  &  &  \searrow \rlap{\tau_c}  & \rlap{\tau_\gamma} & \searrow \rlap{\tau_{c'}}    \\ \llap{ \text{(the generic arrow in $(\Delta \downarrow 1_\calC)$)} \kern2em \leftcat\beta} \Bigg\downarrow &&&&  &  \llap{\leftcat\beta  \Delta} \Bigg \downarrow  &  [\calC, \calC]  &  \Bigg\Vert  & &  &  &  \llap{\leftcat \beta} \Bigg \downarrow  &  \calC  &  c   &  \xrightarrow[\kern3em]{\gamma}  & c'   \\ {\leftcat{b'}}[\tau'] &&&&  & {\leftcat {b'}} \Delta  &  \xrightarrow[\textstyle \tau']{\kern2em}  &  1_\calC  & &  &  &  &  \nearrow \rlap{{\tau'}_c}  & \rlap{{\tau'}_\gamma} & \nearrow \rlap{{\tau'}_{c'}}  \\  &&&& &&&&&&   & {\leftcat b'}        \\  \\    \hline    &&&& &&&&&&  \kern6em & {\leftadj\bot}   \\  {\leftadj\bot}[\bigcirc] &&&&  & {\leftadj\bot} \Delta  &  \xrightarrow[\kern2em]{\textstyle \bigcirc}  &  1_\calC & &  &  &  &  \searrow \rlap{(\bigcirc_{\leftadj\bot} {=} 1_{\leftadj\bot})}  & & \kern2em \searrow \rlap{\bigcirc_{c}}    \\   \llap{ \text{(a special case)} \kern2em \leftcat\beta} \Bigg\downarrow &&&&  &  \llap{\leftcat\beta  \Delta} \Bigg \downarrow  &  [\calC, \calC]  &  \Bigg\Vert  & &  &  &  \llap{\leftcat \beta} \Bigg \downarrow  &  \calC  &  \leftadj\bot  &  \xrightarrow[\kern3em]{\gamma}  & c   \\   {\leftcat{b}}[\tau] &&&&  & {\leftcat {b}} \Delta  &  \xrightarrow[\textstyle \tau]{\kern2em}  &  1_\calC  & &  &  &  &  \nearrow \rlap{{\tau}_{\leftadj\bot}}  & {} \rlap{\tau_\gamma} & \nearrow \rlap{{\tau}_{c}}  \\  &&&& &&&&&&   & {\leftcat b}     \end{array}\]


Let $\boxed{ \leftcat b[\tau] = \leftcat b[ \leftcat b\Delta \buildrel \textstyle \tau \over \Rightarrow 1_{\calC} ] =  <\leftcat b, \leftcat b\Delta \buildrel \textstyle \tau \over \Rightarrow 1_{\calC}> }$ be an arbitrary cone in $(\Delta \downarrow \ulcorner 1_\calC \urcorner)$.

Since ($\tau$ is a cone), we have, for each $c \in \calC$,

\[ \boxed{   \begin{array}{ccccc|c|ccccc} && \leftcat b &&     &&      \leftcat  b  & {} \rlap{ \kern-1em \xrightarrow[\kern9em]{\textstyle \tau_{\leftadj\bot}} }  &&& {\leftadj\bot} \\  & \llap{\tau_{\leftadj\bot}} \swarrow & \tau_{\bigcirc_c} & \searrow \rlap{\tau_c} &&  \text{i.e., reflecting,} &  &  \llap{\tau_c} \searrow & \tau_{\bigcirc_c} & \swarrow \rlap{ \bigcirc_c }   \\  \leftadj\bot & {} \rlap{\kern-1em \xrightarrow[\textstyle \bigcirc_c]{\kern9em}} &&& c & \kern6em &    && c   \end{array}    }   \]


Thus $\boxed{ \tau_{\leftadj\bot} : \leftcat b \to {\leftadj\bot} }$ is an arrow in the comma category $(\Delta \downarrow \ulcorner 1_\calC \urcorner)$, $\tau_{\leftadj\bot}: \leftcat b[\tau] \to {\leftadj\bot}[\bigcirc]$.

It remains to show it is the unique such arrow.

Suppose $\boxed{ g : \leftcat b \to {\leftadj\bot} }$ is another such arrow in $(\Delta \downarrow \ulcorner 1_\calC \urcorner)$, $g : \leftcat b[\tau] \to {\leftadj\bot}[\bigcirc]$.

Then we have, for each $c \in {\calC}$ the commutative triangle above the single horizontal line, 

while specializing $c$ to be $\leftadj\bot$ gives the triangle below it:

\[ \boxed{    \begin{array}{l|ccccc|c|cc}    &&&  {} \rlap{  \kern-4em \text{showing}  }   &&&&& & {} \rlap{ \kern-4em \text{showing}  }      \\     &&&  {} \rlap{  \kern-4em \text{(an initial ${\leftadj\bot} [\bigcirc]$ in $\calC$)}  }    &&&&&&  {} \rlap{  \kern-9em \text{(a limit $\rightadj{ \lim[\pi : {\lim}\leftadj\Delta \Rightarrow \rightcat{1_\calC}] }  \in \rightcat{ (\leftadj\Delta \downarrow \ulcorner 1_\calC \urcorner) }$ of $\rightcat{1_\calC}$)}  }       \\      &&&  {} \rlap{  \kern-4em \text{is (a limit of $\rightcat{1_\calC}$)}  }    &&&&& & {} \rlap{  \kern-4em \text{is (initial in $\calC$)}  }      \\ \hline  \\ \hline    \text{existence}  & \leftcat b & {}  \leftcat{    \rlap{   \kern-1em \xrightarrow [\kern11em]{  \textstyle \boxed{ \exists \; {\rightcat\tau}_{\leftadj\bot} }  }   }    }   &&& \leftadj\bot & \kern6em & &&     \\  && \rightcat{ \llap{\tau_c} \searrow }   &   {\rightcat\tau}_{\bigcirc_{\rightcat c}} & \swarrow \rlap{ \bigcirc_{\rightcat c} } && &   \rightadj\lim & {} \rlap{   \kern-1em \rightadj{  \xrightarrow [\kern9em] { \textstyle \smash{  \boxed{\exists \; \pi_{\rightcat c}} }  }  }   }  &&& \rightcat{c \, \forall}    \\   &&& \rightcat c && &&        \\   \hline  \text{uniqueness}   \\ \hline      \text{suppose} & \leftcat b[\tau] & {} \rlap{ \kern-1.5em \xrightarrow[\textstyle \kern4em g \kern4em]{\textstyle (\Delta \downarrow 1_\calC)} } &&&  {\leftadj\bot}[\bigcirc]   &&&&&   \\ \hline  \\ \hline   &  \leftcat b & {}\rlap{ \kern-1em \xrightarrow [\kern11em]{\textstyle g} }   &&& \leftadj\bot     &  \kern6em  &  && \rightadj\lim     \\   \text{then} && \llap{\tau_{\rightcat c}} \searrow & \rightcat{ \forall c }& \swarrow \rlap{ \bigcirc_{\rightcat c} }  && && \rightadj{ \llap{\pi_\lim} \swarrow }   &  \rightadj{  \pi_{ \pi_{\rightcat c} }  }  & \rightadj{ \searrow \rlap{\pi_{\rightcat c}} }   \\    &&&  \rightcat c    &&   &&     \rightadj\lim  & {} \rlap{  \kern-1em \rightadj{ \xrightarrow[\textstyle \pi_{\rightcat c}]{\kern9em} }  }  &&&  \rightcat{c \, \forall}    \\    \hline  \text{thus}  & \leftcat b & {} \rlap{ \kern-1em \xrightarrow[\kern11em]{\textstyle g} } &&& \leftadj\bot    &   &  && \rightadj\lim    \\  \text{in}   && \llap{\tau_{\leftadj\bot}} \searrow & \rightcat{ c = \leftadj\bot } & \swarrow \rlap{ \bigcirc_{\leftadj\bot} = 1_{\leftadj\bot} }      && &&  \rightadj{ \llap{ 1_{\rightadj\lim} = \pi_\lim } \swarrow  } & {\rightadj\pi}_f &   \rightadj{ \searrow \rlap{ \pi_{\rightcat c} }  }  \\  \text{particular}  &&& \leftadj\bot     &&   &&    \rightadj\lim  & {} \rlap{ \kern-1em \xrightarrow[\textstyle f \, \forall]{\kern9em} }  &&&  \rightcat{c \, \forall}  \end{array}    }   \]     

But $\bigcirc_{\leftadj\bot} = 1_{\leftadj\bot}$.

Thus $g = \tau_{\leftadj\bot}$. 

Thus  (${\leftadj\bot} [\bigcirc]$ is terminal in $(\Delta \downarrow \ulcorner 1_\calC \urcorner)$, 

and thereby a limit of $1_{\calC}$. QED.


<hr />!

The following is the somewhat complicated version of the above used in the Adjoint Functor Theorem to prove that a limit in a certain comma category is initial, and thus constitutes a Left Adjoint.

\[ \boxed{ \begin{array}{l|ccccc|c|cc} &&& {} \rlap{ \kern-4em \text{showing} } &&&&& & {} \rlap{ \kern-5em \text{showing} }   \\   &&& {} \rlap{ \kern-4em \text{(an initial ${\leftadj\bot} [\bigcirc]$ in $\calC$)} } &&&&&& {} \rlap{ \kern-14em \text{(a limit $\rightadj{ \lim[\pi : {\lim}\leftadj\Delta \Rightarrow \rightcat{1_{ \leftcat{(l \downarrow \rightadj R)} }}] } \in \rightcat{ (\leftadj\Delta \downarrow \ulcorner 1_{ \leftcat{(l \downarrow \rightadj R)} } \urcorner) }$ of $1_{ \leftcat{(l \downarrow \rightadj R)} }$)} }    \\    &&& {} \rlap{ \kern-4em \text{is (a limit of $\rightcat{1_\calC}$)} } &&&&& & {} \rlap{ \kern-7em \text{is (initial in $\leftcat{(l \downarrow \rightadj R)}$)} }   \\       \hline \\ \hline     \text{existence} & \leftcat b & {} \leftcat{ \rlap{ \kern-1em \xrightarrow [\kern11em]{ \textstyle \boxed{ \exists \; {\rightcat\tau}_{\leftadj\bot} } } } } &&& \leftadj\bot & \kern6em & &&   \\   && \rightcat{ \llap{\tau_c} \searrow } & {\rightcat\tau}_{\bigcirc_{\rightcat c}} & \swarrow \rlap{ \bigcirc_{\rightcat c} } && & {  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  }   & {} \rlap{     \kern-1em \rightadj{ \xrightarrow [\kern18em] {      \textstyle \smash{  \boxed{ \exists \; \pi_{ \rightcat r \leftcat{[\kappa]} } }  }   }    }     } &&& \rightcat{ r \leftcat{[\kappa]} \, \forall } \\ &&& \rightcat c && && \\ \hline \text{uniqueness} \\ \hline \text{suppose} & \leftcat b[\tau] & {} \rlap{ \kern-1.5em \xrightarrow[\textstyle \kern4em g \kern4em]{\textstyle (\Delta \downarrow 1_\calC)} } &&& {\leftadj\bot}[\bigcirc] &&&&& \\ \hline \\ \hline & \leftcat b & {}\rlap{ \kern-1em \xrightarrow [\kern11em]{\textstyle g} } &&& \leftadj\bot & \kern6em & && \rightadj{  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  }  \\ \text{then} && \llap{\tau_{\rightcat c}} \searrow & \rightcat{ \forall c }& \swarrow \rlap{ \bigcirc_{\rightcat c} } && && \rightadj{ \llap{\pi_{  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  } } \swarrow } & \rightadj{ \pi_{ \pi_{ \rightcat r \leftcat{[\kappa]} } } } & \rightadj{   \searrow \rlap{  \pi_{ \rightcat r \leftcat{[\kappa]} }  }   }   \\   &&& \rightcat r \leftcat{[\kappa]}  && && \rightadj{  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  }  & {} \rlap{ \kern-1em \rightadj{ \xrightarrow[\textstyle \pi_{ \rightcat r \leftcat{[\kappa]} }]{\kern18em} } } &&& \rightcat{ r \leftcat{[\kappa]} \, \forall } \\      \hline       \text{thus} & \leftcat b & {} \rlap{ \kern-1em \xrightarrow[\kern11em]{\textstyle g} } &&& \leftadj\bot & & && \rightadj{ \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] } }    \\    \text{in} && \llap{\tau_{\leftadj\bot}} \searrow & \rightcat{ c = \leftadj\bot } & \swarrow \rlap{ \bigcirc_{\leftadj\bot} = 1_{\leftadj\bot} } && && \rightadj{    \llap{   1_{  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }        } = \pi_{ \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  }   } \swarrow    }   & {\rightadj\pi}_f & \rightadj{   \searrow \rlap{   \pi_{ \rightcat r \leftcat{[\kappa]} }  }   } \\ \text{particular} &&& \leftadj\bot && &&   \rightadj{  \rightcat{ \big( (\black G Q) {\lim}_\calR \big) } \leftcat{ [\overline{\black G \lambda)}] }  } & {} \rlap{ \kern-1em \xrightarrow[\textstyle f \, \forall]{\kern18em} } &&& \rightcat{ r \leftcat{[\kappa]} \, \forall }  \\    \end{array} } \]     


<hr />

And here is a very general version of the argument, 

showing how (the situation) can perspicuously be viewed 2-categorically, 

as ( two (horizontal compositions) in (the 2-category $\CAT$) ).

(Writing $\rightadj{\boxed \lim}$ as short for $\rightadj{  \boxed{ \lim  \rightcat{1_\calC} }  }$.)

\[  \boxed{     .\begin{array} {ccccccccc|c}   && \calI &&&& \calI &&   \\   & \llap{!} \nearrow &   \rightadj{ \llap{\pi} \swarrow \rlap{\kern-1.5em \swarrow} }  &  \rightadj{ \searrow \rlap{{\lim}} }  &&   \llap{!} \nearrow &   \rightadj{ \searrow \rlap{\kern-1.5em \searrow \kern0em \pi}  }  &  \rightadj{ \searrow \rlap{{\lim}} }  & &  \CAT   \\  \rightcat{   \calC \rlap{ \kern0em \xrightarrow[\textstyle 1_\calC]{\kern11em} }  }   &&&&  \rightcat{  \calC \rlap{ \kern0em \xrightarrow[\textstyle 1_\calC]{\kern11em} }   }    &&&& \rightcat\calC  \\   \hline  &&&&  \rightadj\lim  \\   &&& .\swarrow  &&  \rightadj{  \searrow \rlap{\lim \pi = \pi_\lim}  } &&     \\   &&  \rightadj{{\lim}}  &&  {} \rlap{  \kern-2em \rightadj{ \boxed{\pi \pi = \pi_\pi} }  }   &&  \rightadj{{\lim}}   &&&   \rightcat{[ \calC, \calC ]}     \\   &&&  \rightadj{  \llap{ \pi = \rightcat{1_\calC} \pi } \searrow   } &&  \rightadj{  \swarrow \rlap{ \pi \rightcat{1_\calC} = \pi }  }  \\  &&&& \rightcat{1_\calC}  \\         \hline  {} \rlap{  \kern1em  \text{Thus, by (the universal property)} }  \\  {} \rlap{ \kern1em \text{of (the $\rightadj{ \pi = \pi \rightcat{1_\calC} }$ at the lower right),} }  \\    {} \rlap{  \kern4em \boxed{  \rightadj{\pi_\lim = 1_\lim : \lim \to \lim} } \, . }   \\   {} \rlap{  \kern-1em \text{The important point here is the confluence of:} }  \\  {} \rlap{ \kern2em \text{the self-application (squaring) of} }  \\  {} \rlap{ \text{( (the $\rightadj\pi$ for $\rightadj{ \lim(\rightcat{1_\calC}) }$), an endo-2-cell on $\rightcat\calC$ ),} }  \\   {} \rlap{ \kern0em \text{and ( (the universal property) of (that $\rightadj\pi$) ).} }  \\   \hline     && \calI &&&& \calI &&   \\   &  \nearrow &  \rightcat{ \llap f \swarrow \rlap{\kern-1.5em \swarrow} }  &  \rightadj{ \searrow \rlap{{\lim}} }  &&   \llap{!} \nearrow &   \rightadj{ \searrow  \rlap{\kern-1.5em \searrow \kern0em \pi}    }  &  \rightadj{ \searrow \rlap{{\lim}} }  &&  \CAT   \\  \rightcat{   \calI \rlap{ \kern0em \xrightarrow[\textstyle c]{\kern11em} }  }   &&&&  \rightcat{  \calC \rlap{ \kern0em \xrightarrow[\textstyle 1_\calC]{\kern11em} }   }   &&&& \rightcat\calC  \\   \hline    &&&&  \rightadj\lim  \\   &&& \rightcat\swarrow  &&  \rightadj{  \searrow \rlap{\lim \pi = \pi_\lim}  }  &&     \\   &&  \rightadj{{\lim}}  &&  {} \rlap{   \kern-2em \rightcat{ \boxed{f \rightadj\pi = {\rightadj\pi}_f} }  }   &&  \rightadj{{\lim}}  &&&   \rightcat{ [ \calI, \calC ] \cong \calC }   \\   &&&  \rightadj{  \llap{  \pi_{\rightcat c} = \rightcat c \pi } \searrow   } &&  \rightcat{  \swarrow \rlap{ f \rightcat{1_\calC} = f }  }  \\  &&&& \rightcat c \\  \end{array}    }    \]

Of course in each case what counts is 

the naturality of the right-hand occurrence of $\rightadj\pi$.

No comments:

Post a Comment