Saturday, March 15, 2014

The identities-are-universal (Yoneda) lemma

$\Newextarrow{\xlongequiv}{2,2}{0x2261}$ Lemma (“identities are universal”)

(This is more commonly known in category theory
as the “Yoneda lemma” (Wikipedia, nlab, Milewski).)

Given

  • A category $\catd$;
  • An object $d \in\catd$ such that $(\forall d'\in\catd)\,(\homst d \catd {d'} \in \Set)$
    (in this context such objects $d$ are called admissible),
    so that the functor $\homst d \catd -$ lands in $\Set$: $\homst d \catd - : \catd \mathrel\longrightarrow \Set$;
  • A functor $\target {X : {}} \catd \mathrel{\target\longrightarrow} \Set$;
there is then a bijection of sets \[\bbox[20px,border:4px groove red]{\hat x = \tau \in \hom {\homst d \catd -} {[\catd,\Set]} {\target X} \mathrel{\begin{smallmatrix}{} \xrightarrow{\textstyle \text{restriction}\,\check{()}} \\ \textstyle \cong \\ \xleftarrow[\textstyle \text{extension}\,\hat{()}]{} \end{smallmatrix}} \target{X}_d \ni x = \check\tau }\, . \taglabel{iaf-bij}\] Further, this bijection is natural in its parameters $(d\in\catd)$ and $(X\in [\catd,\Set])$.

This lemma is proved in a series of four sublemmas, interspersed with some remarks.

Remarks on styles and notation.

Parts of the proof are presented in three different styles,
which are named and described in the left column below,
with examples of these styles in the next two columns.
In the column headed “Unambiguous notation”, upper corner brackets denote “name of”.
However, to reduce notational clutter, in other parts of this document all those corner brackets are omitted
(relying on the wisdom of the reader to understand the proper meaning of the symbol),
as in the examples in the column headed “Ambiguous notation” (i.e., “Overloaded entity names”),
which use the same symbol “$x$” for:
an element of $X_d$, its name, and the name of that.
The last column shows 0-D, 1-D, and 2-D notations for a natural transformation.
Constants used are: $1\in\Set$, the unit (terminal) set, and $\cati\in\CAT$, the unit (terminal) category.

Style Unambiguous notation Ambiguous notation Notation for natural transformations
0-D (i.e., an element of a set, in set theory) $x\in X_d$ $x\in X_d$ $\tau \in \hom {\homst d \catd -} {[\catd,\Set]} {\target X}$
1-D (i.e., an arrow (1-cell) in a 1-category,
in the next two columns $\Set$,
in the last column $[\catd, \Set]$)
$1 \xrightarrow[]{\textstyle \ulcorner x \urcorner} X_d$ $1 \xrightarrow[]{\textstyle x} X_d$ $\homst d \catd - \buildrel \textstyle \tau \over \Rightarrow \target X$
2-D (i.e., a 2-cell in a 2-category,
in this case $\CAT$)
($\ulcorner X_d\urcorner$ and $X_d$ are shown
in both unfactored and factored 1-D form)
$\begin{smallmatrix}{} & & \xrightarrow[]{\textstyle \ulcorner 1 \urcorner} \\ & & \textstyle\big\Downarrow\rlap{\textstyle \ulcorner\ulcorner x \urcorner\urcorner} & & \\ \textstyle\cati \mkern{10mu} & & \xrightarrow[\textstyle\ulcorner X_d \urcorner]{} & & \mkern{30mu} \textstyle\Set \\ & \llap{\lower3pt\hbox{$\ulcorner d \urcorner$}}\textstyle\searrow & \Vert & \textstyle\nearrow\rlap{\lower3pt\hbox{$X$}} \\ & & \textstyle\catd \\ \end{smallmatrix}$ $\begin{smallmatrix}{} & & \xrightarrow[]{\textstyle 1 } \\ & & \textstyle\big\Downarrow\rlap{\textstyle x } & & \\ \textstyle\cati \mkern{10mu} & & \xrightarrow[\textstyle X_d ]{} & & \mkern{10mu} \textstyle\Set \\ & \llap{\lower3pt\hbox{$d$}}\textstyle\searrow & \Vert & \textstyle\nearrow\rlap{\lower3pt\hbox{$X$}} \\ & & \textstyle\catd \\ \end{smallmatrix}$ $\catd \twocellctb \tau {\homst d \catd -} {\target X} \Set$

In applications of this lemma, it is useful to have a notation which indicates
the data to which it is being applied.
The notation used in this and related documents to indicate such
is illustrated by the following example, which refers to the generic data in the statement of the lemma \[ \text{iaf}(\cati \buildrel \textstyle d \over \longrightarrow \catd \buildrel \textstyle X \over \longrightarrow \Set)\; .\]

Sublemma. Defining the inverse functions of the bijection.

$\text{restriction}\,\check{()}$
$\hom {\homst d \catd -} {[\catd,\Set]} {\target X} \ni \tau \longmapsto \check\tau \in {\target X}_d\;$(“$\tau-\text{res}$”)
$\text{extension}\,\hat{()}$
${\target X}_d \ni x \longmapsto \hat x \in \hom {\homst d \catd -} {[\catd,\Set]} {\target X}\;$(“$x-\text{ext}$”)
\[\bbox[20px,border:4px groove red]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap{1_d} & \Big\downarrow\rlap{1}\\ \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array}} \taglabel{iaf-res-2D}\] \[\bbox[20px,border:4px groove red]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \Big\Downarrow\rlap x & \Bigg\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}} \taglabel{iaf-ext-2D}\]
The restriction direction $\check{()}$ of bijection $\eqref{iaf-bij}$ is the following composite: \[\begin{array}{} \tau \in & \hom {\homst d \catd -} {[\catd,\Set]} {\target X}\\ & \mkern{40mu} \Big\downarrow \mkern{-51mu} \hom {\homst d \catd -} {[d,\Set]} {\target X}\\ d\tau \in & \hom {\homst d \catd d} {[\cati,\Set]} {\target{X}_d} & \cong & \hom {\homst d \catd d} \Set {\target{X}_d} & \ni \tau_d\\ & & & \mkern{30mu} \Big\downarrow \mkern{-36mu} \hom {1_d} \Set {{\target X}_d}\\ & & 1_d\tau_d \in & \hom 1 \Set {{\target X}_d} & \cong & {\target X}_d & \ni (1_d)\tau_d = \bbox[2px,border:2px groove black]{\check\tau}\\ & \textrm{2-D} & & \textrm{1-D} & & \textrm{0-D} & \\ \end{array}\]

This gives (1.46) of Max Kelly’s Basic Concepts of Enriched Category Theory
when (Kelly’s $\cal V$ (the base for enrichment)) is $\Set$,
for $1_d\tau_d$, when factored in 1-D form (as in "1-D" below), is ECT (1.46);
thus, (the $\eta$ given by ECT (1.46)) is (our $\check\tau$).

Note that we restrict/evaluate twice:
first by $d$, i.e., taking the $d$th-component of the natural transformation $\tau$,
then by $1_d$, i.e., evaluating the $\Set$-function $\tau_d$ at $1_d$.

The extension direction $\hat{()}$ of bijection $\eqref{iaf-bij}$ is defined as follows.
Given $(x\in \target X_d)$ and $(d' \in \catd)$, define a function in $\Set$
((the $d'$-part of) the orbit of $x$ under the action $X : \catd \rightarrow \Set$) \[\bbox[10px,border:2px groove black]{ \begin{array}{} \homst d \catd {d'} & \buildrel \textstyle \hat x _{d'} \over \longrightarrow & \target X _{d'}\\ \delta & \longmapsto & (x)\target X_\delta \equiv x\delta \equiv (\delta)\hat x _{d'} \\ \end{array}}\] by \[\begin{array}{} \delta & \in & \homst d \catd {d'}\\ & & \Big\downarrow \mkern{-21mu} \homst d {\target X} {d'}\\ \target X_\delta & \in & \hom {\target X _d} \Set {\target X_{d'}}\\ & & \mkern{20mu} \Big\downarrow \mkern{-30mu} \hom x \Set {\target X_{d'}}\\ x\target X_\delta & \in & \hom 1 \Set {\target X_{d'}} & \cong & \target X _{d'} & \ni & (x)\target X_\delta \equiv x\delta \equiv \bbox[2px,border:2px groove black]{(\delta)\hat x _{d'}} \; .\\ & & \textrm{1-D} & & \textrm{0-D} & &\\ \end{array}\] This is (1.47) of Kelly’s Basic Concepts of Enriched Category Theory
when (the base for enrichment $\cal V$) is $\Set$;
thus, (the $\eta$ in ECT (1.47)) is (our $x$).

$\hat x_{d'}$ is natural in $d'\in\catd$
(for the proof see below),
thus defines a natural transformation in $\CAT$ \[\bbox[10px, border:4px groove black]{ \twocellctblr {\bbox[2px,border:2px groove black]{\textstyle \hat x}} {\homst d \catd -} {\target X} \catd \Set }\; .\]

Note that we apply abstraction twice:
first over ($d'\in\catd$),
then over ($\delta\in \homst d \catd {d'}$).
We can present the definitions,
in the form of, effectively, lambda abstraction over elements
($\tau \in \hom {\homst d \catd -} {[\catd,\Set]} {\target X}$), ($x\in X_d$), ($d' \in \catd$), ($\delta \in \homst d \catd {d'}$) in the respective domains,
in 0-D, 1-D, and 2-D forms, facilitating comparison.
$\textrm{0-D}$ $(1_d)\tau_d$ $\xlongequal{\textstyle\check{()}}$ $\boxed{\check\tau}$ $(x)\target X_\delta \equiv x\delta$ $\xlongequal{\textstyle\hat{()}}$ $\boxed{(\delta)\hat x_{d'}}$
$\textrm{1-D}$
(in $\Set$)
$\bbox[20px,border:4px groove black]{1 \xrightarrow[]{\textstyle 1_d} \hom d \catd d \xrightarrow[]{\textstyle \tau_d} \target X_d}$ $\xlongequal{\textstyle\check{()}}$ $\bbox[20px,border:4px groove black]{1 \xrightarrow[]{\textstyle \boxed{\check\tau}} \target X_d}$ $\bbox[20px,border:4px groove black]{1 \xrightarrow[]{\textstyle x} \target X_d \xrightarrow[]{\textstyle \target X_\delta} \target X_{d'}}$ $\xlongequal{\textstyle\hat{()}}$ $\bbox[20px,border:4px groove black]{1 \xrightarrow[]{\textstyle \delta} \hom d \catd {d'} \xrightarrow[]{\textstyle \boxed{\hat x_{d'}}} \target X_{d'}}$
$\textrm{2-D}$
(in $\CAT$)
$\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap{1_d} & \Big\downarrow\rlap{1}\\ \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array}}$ $\xlongequiv{\textstyle\check{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap{\boxed{\check\tau}} & \Big\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}}\] $\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \Big\Downarrow\rlap x & \Bigg\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}}$ $\xlongequiv{\textstyle\hat{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Big\downarrow & \Big\Downarrow\rlap\delta & \Big\downarrow\rlap{1}\\ \catd & \twocellctb {\boxed{\hat x}} {\homst d \catd -} {\target X} & \Set \\ \end{array}} \]

Sublemma. Restriction $\check{()}$ and extension $\hat{()}$ are inverse to each other, i.e.,
$\check{\hat x} = x$ ($x$ extended $\hat{()}$ then restricted $\check{()}$ equals $x$), and
$\hat{\check \tau} = \tau$ ($\tau$ restricted $\check{()}$ then extended $\hat{()}$ equals $\tau$).

The easy proof that $\check{\hat x} = x$ is left as an exercise.
To prove $\hat{\check \tau} = \tau$,
let ($d' \in \catd$) and ($\delta \in \hom d \catd {d'}$) be arbitrary
and consider the following commutative diagram in $\Set$ \[\begin{array}{} &&\xrightarrow{\displaystyle \check\tau}\\ 1 & \xrightarrow{\textstyle 1_d} & \hom d \catd d & \xrightarrow{\textstyle \tau_d} & {\target X}_d\\ & \llap{\mkern{4mu}\lower3pt\delta} \searrow & \mkern{10mu}\bigg\downarrow \mkern{-22mu}\hom d \catd \delta & \tau_\delta & \mkern{6mu}\bigg\downarrow \mkern{-15mu} {\target X}_\delta\\ && \hom d \catd {d'} & \xrightarrow[\textstyle \tau_{d'}]{} & {\target X}_{d'} \end{array} \taglabel{iaf-res-ext-1D}\] where the triangle is the left unit law for $\delta$
and the square is the naturality of $\tau$ at $\delta$.
The top edge of the diagram is $\check \tau$ ($\tau$ restricted);
the top and right edges give $(\delta)(\hat{\check \tau})_{d'}$;
the left and bottom edges give $(\delta)\tau_{d'}$;
so commutativity of the diagram gives $(\delta)(\hat{\check \tau})_{d'} = (\delta)\tau_{d'}$.
Since ($d' \in \catd$) and ($\delta \in \hom d \catd {d'}$) were arbitrary, this gives $\tau = \hat{\check \tau}$.

The crucial diagram $\eqref{iaf-res-ext-1D}$ is the projection of a 2-diagram in $\CAT$: \[\begin{array}{} & & \xrightarrow{\textstyle 1} \\ & & \big\Downarrow \rlap{1_d} \\ \cati & \twocellctb \delta d {d'} & \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array} \taglabel{iaf-res-ext-2D}\]

We can put both parts of the proof of the bijection in either equational (0-D) form
or as equalities between 2-cells in $\CAT$ (2-D) form,
as well as the 1-D form:

$\check{\hat x} = x$ ($x$ extended $\hat{()}$ then restricted $\check{()}$ equals $x$)
$\textrm{0-D}$ $\check{\hat x}$ $\xlongequal{\textstyle\check{()}}$ $(1_d){\hat x}_d$ $\xlongequal{\textstyle\hat{()}}$ $(x)\target X_{1_d} \equiv x\mkern{1mu}1_d$ $\xlongequal{\target{X^\circ}+\textrm{unit}}$ $x$
$\textrm{1-D}$
(in $\Set$)
$1$ $=$ $1$ $=$ $1$ $=$ $1$
$\downarrow \rlap{1_d}$ $\downarrow \rlap{x}$
$\downarrow \rlap {\check{\hat x}}$ $\xlongequal{\textstyle\check{()}}$ $\hom d \catd d$ $\xlongequal{\textstyle\hat{()}}$ $\target X_d$ $\xlongequal{\target{X^\circ}+\textrm{unit}}$ $\downarrow \rlap x$
$\downarrow \rlap{{\hat x}_d}$ $\downarrow \rlap{\target X_{1_d}}$
$\target X_d$ $=$ $\target X_d$ $=$ $\target X_d$ $=$ $\target X_d$
$\textrm{2-D}$
(in $\CAT$)
\[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap {\check{\hat x}} & \Big\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}}\] $\xlongequiv{\textstyle\check{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap{1_d} & \Big\downarrow\rlap{1}\\ \catd & \twocellctb {\hat x} {\homst d \catd -} {\target X} & \Set \\ \end{array}}\] $\xlongequiv{\textstyle\hat{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle 1_d \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \Bigg\Downarrow\rlap x & \Bigg\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}}\] $\xlongequiv{\target{X^\circ}+\textrm{unit}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d}\Big\downarrow & \Big\Downarrow\rlap x & \Big\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}}\]
$\hat{\check \tau} = \tau$ ($\tau$ restricted $\check{()}$ then extended $\hat{()}$ equals $\tau$)
$\textrm{0-D}$ $(\delta)(\hat{\check \tau})_{d'}$ $\xlongequal{\textstyle\hat{()}}$ $(\check\tau){\target X}_\delta$ $\xlongequal{\textstyle\check{()}}$ $\bigl((1_d)\tau_d\bigr){\target X}_\delta$ $\xlongequal{\textstyle 1_d\tau_\delta}$ $\bigl((1_d) \hom d \catd \delta\bigr) \tau_{d'}$ $\xlongequal{\textrm{unit}}$ $(\delta){\target \tau}_{d'}$
$\textrm{1-D}$
(in $\Set$)
$1$ $=$ $1$ $=$ $1$ $=$ $1$ $=$ $1$
$\downarrow\rlap{1_d}$ $=$ $\downarrow\rlap{1_d}$
$\downarrow\rlap\delta$ $\downarrow\rlap{\check\tau}$ $\check\tau$ $\hom d \catd d$ $=$ $\hom d \catd d$ $\textrm{unit}$ $\downarrow\rlap\delta$
$\hat{\check \tau}$ $\downarrow\rlap{\tau_d}$ $\downarrow\rlap{\hom d \catd \delta}$
$\homst d \catd {d'}$ $\target X_d$ $=$ $\target X_d$ $\tau_\delta$ $\hom d \catd {d'}$ $=$ $\hom d \catd {d'}$
$\downarrow\rlap{(\hat{\check \tau})_{d'}}$ $\downarrow\rlap{\target X_\delta}$ $=$ $\downarrow\rlap{\target X_\delta}$ $\downarrow\rlap{\tau_{d'}}$ $=$ $\downarrow\rlap{\tau_{d'}}$
$\target X_{d'}$ $=$ $\target X_{d'}$ $=$ $\target X_{d'}$ $=$ $\target X_{d'}$ $=$ $\target X_{d'}$
$\textrm{2-D}$
(in $\CAT$)
\[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Big\downarrow & \Big\Downarrow\rlap\delta & \Big\downarrow\rlap{1}\\ \catd & \twocellctb {\hat{\check \tau}} {\homst d \catd -} {\target X} & \Set \\ \end{array}} \] $\xlongequiv{\textstyle\hat{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \Big\Downarrow\rlap {\check\tau} & \Bigg\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}} \] $\xlongequiv{\textstyle\check{()}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \Bigg\Downarrow\rlap{1_d} & \Big\downarrow\rlap{1}\\ \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array}} \] $\xlongequal{\textstyle 1_d\tau_\delta}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap{d} & \buildrel \textstyle 1_d \over \Longleftarrow & \Big\downarrow\rlap{1}\\ \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array}} \] $\xlongequiv{\textrm{unit}}$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Big\downarrow & \Big\Downarrow\rlap\delta & \Big\downarrow\rlap{1}\\ \catd & \twocellctb \tau {\homst d \catd -} {\target X} & \Set \\ \end{array}} \]

Sublemma. $\hat x_{d'}$ is natural in $d' \in \catd$.

\[\begin{array}{rcccl} \text{If} & d' & \xrightarrow{\textstyle \epsilon} & d'' & \text{is an arbitrary arrow in $\catd$}\\ \text{then} & \text{the} & \text{following} & \text{diagram} & \text{commutes:}\\ \delta \in & \hom d \catd {d'} & \xrightarrow{\textstyle \hom d \catd \epsilon} & \hom d \catd {d''} & \ni \delta\epsilon\\ & \mkern{10mu} \bigg\downarrow \mkern{-22mu} \hom d {\target X} {d'} & \target{\tilde X} & \mkern{10mu} \bigg\downarrow \mkern{-22mu} \hom d {\target X} {d''}\\ {\target X}_\delta \in & \hom {{\target X}_d} \Set {{\target X}_{d'}} & \xrightarrow{\textstyle \hom {{\target X}_d} \Set {{\target X}_\epsilon}} & \hom {{\target X}_d} \Set {{\target X}_{d''}} & \ni {\target X}_\delta{\target X}_\epsilon \xlongequal{\textstyle {\target {\tilde X}}} {\target X}_{\delta\epsilon}\\ & \mkern{30mu} \Bigg\downarrow \mkern{-30mu} \hom x \Set {{\target X}_{d'}} & \textstyle \hom x \Set {{\target X}_\epsilon} \atop \textstyle \text{(assoc in $\Set$)} & \mkern{30mu} \Bigg\downarrow \mkern{-30mu} \hom x \Set {{\target X}_{d''}} \\ x{\target X}_\delta \in & \hom 1 \Set {{\target X}_{d'}} & \xrightarrow{\textstyle \hom 1 \Set {{\target X}_\epsilon}} & \hom 1 \Set {{\target X}_{d''}} & \ni (x{\target X}_\delta){\target X}_\epsilon \xlongequal{\textstyle\text{assoc}} x({\target X}_\delta{\target X}_\epsilon) \xlongequal{\textstyle {x\target {\tilde X}}} x{\target X}_{\delta\epsilon}\\ & \llap\cong \big\downarrow && \big\downarrow \rlap\cong\\ x\delta \in & \target X_{d'} & \xrightarrow[\textstyle \target X_\epsilon]{} & \target X_{d''} & \ni (x\delta)\epsilon = x(\delta\epsilon)\\ \end{array}\] The left side of the above diagram is ${\hat x}_{d'}$; the right side is ${\hat x}_{d''}$;
thus the diagram gives \[\begin{array}{} \delta \in & \hom d \catd {d'} & \xrightarrow{\textstyle \hom d \catd \epsilon} & \hom d \catd {d''} & \ni \delta\epsilon\\ & \llap{{\hat x}_{d'}} \bigg\downarrow & {\hat x}_\epsilon & \bigg\downarrow \rlap{{\hat x}_{d''}}\\ x\delta \in & \target X_{d'} & \xrightarrow[\textstyle \target X_\epsilon]{} & \target X_{d''} & \ni (x\delta)\epsilon = x(\delta\epsilon)\\ \end{array} \taglabel{iaf-ext-nat-1D} \] so the total diagram shows that ${\hat x}_{d'}\,{\target X}_\epsilon \xlongequal{\textstyle {\hat x}_\epsilon} \hom d \catd \epsilon\,{\hat x}_{d''}$,
which gives naturality of $\hat x$ at $\epsilon$.

The above proof amounts to different ways of evaluating the 2-diagram in the 2-category $\CAT$: \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d''}\Bigg\downarrow \mkern{-8mu} \buildrel \textstyle \epsilon \over \Longleftarrow \mkern{-4mu} \Bigg\downarrow \mkern{-10mu}d' \mkern{-8mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-8mu} \Bigg\downarrow\rlap{d} & \buildrel \textstyle x \over \Longleftarrow & \Bigg\downarrow\rlap{1}\\ \catd & \target{\xrightarrow[\textstyle X]{}} & \Set \\ \end{array}} \taglabel{iaf-ext-nat-2D} \]


Sublemma. The $\eqref{iaf-bij}$ bijection is natural in its parameters $(\source d \in \catd)$ and $(\target X \in [\catd,\Set])$.

Suppose ($\source{d \buildrel \textstyle\delta \over \rightarrow d'}$ in $\catd$) and ($\target{X \buildrel \textstyle\phi \over \Rightarrow Y}$ in $[\catd,\Set]$).
Then, given $\big(\homst d \catd - \buildrel \textstyle\tau \over \Rightarrow \target X$ in $[\catd,\Set]\big)$,
we have the 2-diagram in $\CAT$ \[\bbox[20px,border:4px groove red]{\begin{array}{} \cati & \xlongequal{} & \cati\\ \llap{d'}\Bigg\downarrow \mkern{-10mu} \buildrel \textstyle \delta \over \Longleftarrow \mkern{-10mu} \Bigg\downarrow\rlap d & & \Bigg\downarrow\rlap{1}\\ \catd & \begin{smallmatrix} \xrightarrow[]{\textstyle \homst {\source{d'}} \catd -}\\ \textstyle \Downarrow \rlap{\homst {\source\delta} \catd -}\\ \xrightarrow[\textstyle \homst {\source d} \catd -]{}\\ \textstyle \Downarrow \rlap \tau\\ \target{\xrightarrow[\textstyle X]{}}\\ \target{\textstyle \Downarrow \rlap \phi}\\ \target{\xrightarrow[\textstyle Y]{}}\\ \end{smallmatrix} & \Set \\ \end{array}}\; . \taglabel{iaf-nat-2D}\] Adding the extraordinary naturality of $1_-$ at $\delta$
to the situation in that 2-diagram
gives the naturality of restriction $\check{()}$ at $\source\delta$, $\target\phi$, and $\tau$:

The naturality requirement on the restriction, $\check{()}$, direction of $\eqref{iaf-bij}$
is that the following diagram in $\Set$ commutes \[\begin{array}{} \tau && \check \tau\\ \hom {\homst d \catd -} {[\catd,\Set]} {\target X} & \xrightarrow{\;\textstyle \homst d {\check{()}} X \;} & \target X_d\\ \mkern{46mu} \Bigg\downarrow \mkern{-60mu} \hom {\homst {\source\delta} \catd -} {[\catd,\Set]} {\target \phi} & \homst {\source\delta} {\check{()}} {\target\phi} & \Bigg\downarrow \rlap{\target\phi_{\source\delta}}\\ \hom {\homst {d'} \catd -} {[\catd,\Set]} {\target Y} & \xrightarrow[\; \textstyle \homst {d'} {\check{()}} Y \;]{} & \target Y_{d'}\\ (\homst {\source\delta} \catd -)\tau\target\phi && \big((\homst {\source\delta} \catd -)\tau\target\phi\big)\check{} = \check\tau \target\phi_{\source\delta} \end{array} \taglabel{iaf-nat-1D}\] To show that the two legs, when evaluated at a given $\tau \in \hom {\homst d \catd -} {[\catd,\Set]} {\target X}$, agree,
we expand diagram $\eqref{iaf-res-ext-1D}$ a bit,
adding the triangle for the right unit law for $\source\delta$ to its left side
and adding the naturality square for $\target\phi$ at $\source\delta$ to its right side
to get the following commutative diagram in $\Set$: \[\begin{array}{} &&\xrightarrow{\displaystyle \check\tau}\\ 1 & \xrightarrow{\textstyle \source{1_d}} & \hom d \catd d & \xrightarrow{\textstyle \tau_d} & \target X_d & \xrightarrow{\textstyle \target\phi_d} & \target Y_d\\ \llap{1_{d'}}\bigg\downarrow & \searrow \llap{\raise3pt{\source\delta}} & \mkern{8mu} \bigg\downarrow \mkern{-20mu} \hom d \catd \delta & \tau_{\source\delta} & \mkern{6mu} \bigg\downarrow \mkern{-15mu} \target X_{\source\delta} & \target\phi_{\source\delta} & \mkern{8mu} \bigg\downarrow \mkern{-12mu} \target Y_{\source\delta}\\ \hom {d'} \catd {d'} & \xrightarrow[\textstyle \hom {\source\delta} \catd {d'}]{} & \hom d \catd {d'} & \xrightarrow[\textstyle \tau_{d'}]{} & \target X_{d'} & \xrightarrow[\textstyle \target\phi_{d'}]{} & \target Y_{d'}\\ \end{array} \taglabel{iaf-nat'-1D}\] where, again, the squares commute by
extraordinary naturality of $1_-$, naturality of $\tau$, and naturality of $\target\phi$, all at $\source\delta$.
The bottom edge is $\big((\homst \delta \catd -)\tau\target\phi\big)_{d'}$,
so the left and bottom edges give $\big((\homst \delta \catd -)\tau\target\phi\big)\check{}$;
the top and right edges give $\check\tau \target\phi_{\source\delta}$.
So $\big((\homst \delta \catd -)\tau\target\phi\big)\check{} \xlongequal{\textstyle \homst \delta {\check{()}} \phi} \check\tau \target\phi_{\source\delta}$, giving the naturality we desire.


Remark:

The above sublemma may be stated as saying the following is a pair of mutually inverse natural transformations in $\CAT$: \[\begin{array}{rcccl} (\hom d \catd -, X) \in & [\catd, \Set]^{\rm op} \times [\catd, \Set] & \xlongequal[]{} & [\catd, \Set]^{\rm op} \times [\catd, \Set] & \ni (\hom d \catd -, X)\\ & \llap{\hom - \catd - \times [\catd, \Set]} \Bigg\uparrow & \llap{\hat{()}}\Bigg\Uparrow \; \Bigg\Downarrow\rlap{\check{()}} & \Bigg\downarrow \rlap{\hom - {[\catd, \Set]} - }\\ &&&& \ni \hom {\hom d \catd -} {[\catd, \Set]} X \\ (d, X) \in & \catd \times [\catd, \Set] & \xrightarrow[\textstyle \rm eval]{} & \Set \\ &&&& \ni X_d \\ \end{array}\]


Work in progress:

Yoneda structures 1

This is a very incomplete start on a more complete document concerning the paper
Street, Ross; Walters, Robert (1978). "Yoneda structures on 2-categories". J. Algebra. 50 (2): 360–379. doi:10.1016/0021-8693(78)90160-6. MR 0463261.
Right now, without giving the full background, I just want to mention (several key diagrams) used to prove (that paper’s Axiom 1) in (the most familiar case, in $\CAT$).

To start, let us recall the basic "iaf/Yoneda lemma" proved in the previous post “The identities-are-free (Yoneda) lemma”.
The basic iaf/Yoneda lemma may be restated 2-categorically as asserting that,
if ($d$ is an admissible object in a category $\catd$),
then the following is a left extension diagram in the 2-category $\CAT$: \[\begin{smallmatrix}{} \textstyle\cati \mkern{10mu} & & \buildrel \textstyle 1 \over \longrightarrow & & \mkern{10mu} \textstyle\Set \\ & \llap{\lower3pt\hbox{$d$}}\textstyle\searrow & \raise10pt\hbox{$\textstyle\big\Downarrow\rlap{\textstyle 1_d }$} & \textstyle\nearrow\rlap{\lower3pt\hbox{$\homst d \catd -$}} \\ & & \textstyle\catd \\ \end{smallmatrix}\] On the other hand, Street and Walters’ Yoneda structure Axiom 1 (YS1),
applied to (the functor $d : \cati \to \catd$),
would assert the existence of a left extension diagram in the 2-category $\CAT$: \[\begin{smallmatrix}{} \textstyle\cati \mkern{10mu} & & \xrightarrow[]{\textstyle y\cati} & & \mkern{10mu} \textstyle P\cati\\ & \llap{\lower3pt\hbox{$d$}}\textstyle\searrow & \raise10pt\hbox{$\textstyle\big\Downarrow\rlap{\textstyle \chi^d }$} & \textstyle\nearrow\rlap{\lower3pt\hbox{$\homst d \catd -$}} \\ & & \textstyle\catd \\ \end{smallmatrix}\] so we see that the basic Yoneda lemma gives YS1 in this special case,
if we define \[\begin{array}{} P\cati = [\cati^{\rm op}, \Set]\\ y\cati = \homst * \cati -\\ \chi^d = \homst * d -\end{array}\] and note that $[\cati^{\rm op},\Set] \cong \Set$, $\homst * \cati - \cong 1$ (actually, $\ulcorner 1 \urcorner$), and $\homst * d - \cong 1_d$.

Street and Walters generalized this basic result in two ways:
First, they generalize (the functor $d : \cati \to \catd$) (which is merely the name of a single object in $\catd$)
to (functors $f : \source\cata \to \target\catb$ satisfying a smallness condition, which they call admissibility).
Second, they generalize (the ambient environment) from (the 2-category $\CAT$) to (an arbitrary 2-category $\twocatk$).

So Street and Walters postulate a 2-category $\twocatk$,
with a distinguished class of arrows (1-cells), called admissible,
which is closed under precomposition with arbitrary arrows,
making the class an “ideal” under precomposition.
Objects are called admissible when their identity arrow is admissible.
Their Yoneda structure Axiom 1 (YS1) is then:
For every (admissible object $\source A$) and (admissible arrow $f : \source A \to \target B$) in $\twocatk$,
there is a left extension diagram in $\twocatk$: \[\bbox[20px,border:4px groove red]{\begin{smallmatrix}{} \textstyle \source A \mkern{10mu} & & \xrightarrow[]{\textstyle y\source A} & & \mkern{10mu} \textstyle P\source A\\ & \llap{\lower3pt\hbox{$f$}}\textstyle\searrow & \raise10pt\hbox{$\textstyle\big\Downarrow\rlap{\textstyle \chi^f }$} & \textstyle\nearrow\rlap{\lower3pt\hbox{$\homst f B -$}} \\ & & \textstyle \target B \\ \end{smallmatrix}} \taglabel{YS1} \]

In this document we want to show that, with suitable definitions,
this axiom is true when (the 2-category $\twocatk$) is $\CAT$.

The admissible arrows are
those functors $f: \source\cata \to \target\catb$ such that $(\forall \source{a\in\cata}, \target{b\in\catb})(\homst {\source a f} {\target\catb} {\target b} \in\Set)$,
i.e., $\source{(\forall a\in\cata)} \target(\source a f$ is an admissible object in $\target{\catb)}$.
The admissible objects in $\CAT$ are then the locally small categories,
those $\catd\in\CAT$ such that $(\forall d,d'\in\catd)\,(\homst d \catd {d'} \in \Set)$,
i.e., every $d\in\catd$ is an admissible object in $\catd$.


Suppose we have two functors in $\CAT$:

\[\begin{array}{} \source\cata & \buildrel \textstyle f \over \longrightarrow & \target\catb \\ \source a & \mapsto & \source a f\\ \source{\llap\alpha \Big\downarrow} & \mapsto & \target{\Big\downarrow} \rlap{\source\alpha f} \\ \source {a'} & \mapsto & \source{a'} f\\ \end{array}\] and \[\begin{array}{} \source{\cata^{\rm op}} \times \target\catb & \buildrel \textstyle X \over \longrightarrow & \Set \\ (\source {a}, \target {b}) & \mapsto & \homst a X b \\ \llap{\Big(\source{\alpha_0 \Big\uparrow}} , \rlap{\target{\Big\downarrow \beta}\Big)} & \mapsto & \Big\downarrow \rlap{\mkern{-29mu}\homst {\alpha_0} X \beta}\\ (\source {a_1}, \target {b'}) & \mapsto & \homst {a_1} X {b'} \\ \end{array}\]
($\Set$-valued bifunctors (that is, functors of two variables) such as $X$ above
are also known as bimodules, or profunctors (nlab, Wikipedia), or distributeurs.)

Fix an $\boxed{\source{a\in\cata}}$.

We wish to consider elements $\boxed{\red{x \in {}} \hom {\source a} X {\source a f}}$.
Each such $\red{x \in {}} \hom {\source a} X {\source a f}$ may be considered as a 2-cell of the following form in $\CAT$: \[\begin{array}{} & \xrightarrow[]{\textstyle 1} \\ \cati & \red{ \Downarrow\rlap x } & \Set \\ & \source{{} \xrightarrow[\textstyle a]{} \cata} \xrightarrow [\textstyle f]{} \target\catb \xrightarrow[\textstyle \homst a X {-'} ]{} \\ \end{array} \] which is equal to each of the following 2-cells in $\CAT$:

\[\begin{array}{} & \xrightarrow[]{\textstyle 1} \\ \cati & \red{ \Downarrow\rlap x } & \Set \\ & \source{{} \xrightarrow[\textstyle a]{} \cata} \xrightarrow[\textstyle \hom {\source a} X {\target(\source{?'} \black f\target)}]{} \\ \end{array} \] and \[\begin{array}{} & \xrightarrow[]{\textstyle 1} \\ \cati & \red{ \Downarrow\rlap x } & \Set \\ & \target{ {} \xrightarrow[\textstyle \source a \black f]{} \catb } \xrightarrow[\textstyle \hom {\source a} X {-'}]{} \\ \end{array} \]
We may apply (the extension, $\hat{()}$, direction) of (the basic iaf/Yoneda bijection) to each of them:
  • iaf applied to $\cati \source{{} \xrightarrow[\textstyle a]{} \cata} \xrightarrow[\textstyle \hom {\source a} X {\target(\source{?'} \black f\target)}]{} \Set$ gives an ($\source{a'\in\cata}$)-indexed family of functions $\boxed{(\source{\hom a \cata {a'} \xrightarrow[]{\textstyle \hom a \sigma {a'}} {}} \hom {\source a} X {\source{a'}f} )_{\source{a'\in\cata}}}$, natural in $\source{a'\in\cata}$, while
  • iaf applied to $\cati \target{{} \xrightarrow[\textstyle \source a \black f]{} \catb} \xrightarrow[\textstyle \homst a X -]{} \Set$ gives a ($\target{b'\in\catb}$)-indexed family of functions $\boxed{(\target{\hom {\source a \black f} \catb {b'} \xrightarrow[]{\textstyle \homst a \tau {b'}} {}} \homst a X {b'} )_{\target{b'\in\catb}}}$, natural in $\target{b'\in\catb}$
as in the following “butterfly” diagram in $\Set$
(which in fact is two instances of the iaf-res-ext-1D diagram pasted along their common 1-cell $1 \xrightarrow[]{\textstyle \source{\hom a {\check\sigma} {}} = \red x = \target{\homst a {\check\tau} {}}} \hom {\source a} X {{\source a} f} \; $).

\[\begin{array}{} &&&&& 1 \\ &&&& \llap{1_a}\swarrow && \searrow \rlap{1_{af}} \\ && \mkern{-80mu} \source{\llap\alpha \swarrow} & \hom a {\source\cata} a && \llap{\source{\hom a {\check\sigma} {}} = {}} \red{\bigg\downarrow \mkern{-14mu} \boxed x} \rlap{{} = \target{\homst a {\check\tau} {}}} && \hom {af} {\target\catb} {af} & {} \rlap{\mkern{60mu} \target{\searrow \rlap\beta}} \\ && \llap{\source{\hom a \cata \alpha}} \swarrow && \llap{\hom a {\source\sigma} a} \searrow && \swarrow \rlap{\hom a {\target\tau} {af}} && \searrow \rlap{\hom {af} {\target\catb} {\target\beta}} \\ \source{\alpha\in} & \hom a {\source\cata} {a'} && \source{\hom a \sigma \alpha} && \hom a X {af} && \hom a {\target\tau} {\target\beta} && \hom {af} {\target\catb} {\target {b'}} & \target{\ni\beta}\\ && \llap{\source{\boxed{\hom a \sigma {a'}}}} \searrow && \llap{\hom {\source a} X {\source\alpha f}} \swarrow && \searrow \rlap{\homst a X \beta} && \swarrow \rlap{\target{\boxed{\hom {\source a} \tau {b'}}}} \\ &&& \hom {\source a} X {\source{a'}f} &&&& \homst a X {b'} \\ &&& \llap{ \source{(\alpha) \hom a \sigma {a'}} } = \rlap{ (\red x ) \hom {\source a} X {\source\alpha f} } &&&& \llap{ (\red x ) \hom {\source a} X {\target\beta} } = \rlap{ \target{(\beta ) \hom {\source a} \tau {b'}} } \\ \end{array}\]

The following bijections and equalities in $\Set$ are mediated by the equalities under them in $\CAT$:

$\Set:$ $\hom {\source{\hom a \cata {?'}}} {\source{[\cata , \black\Set]}} {\hom {\source a} X {\target(\source{?'}f\target)}}$ $\cong$ $\source{\big(} \hom {\source a} X {\target(\source{?'} \black f\target)} \source{\big)}_{\source a}$ $=$ $\hom {\source a} X {\source a f}$ $=$ $\target{\big(} \homst a X - \target{\big)}_{\target( \source a f \target)}$ $\cong$ $\hom {\target{\hom {(\source a \black f)} \catb -}} {\target{[\catb , \black\Set]}} {\homst a X -}$
$\CAT:$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xrightarrow{\textstyle 1} & \Set \\ \source{ \llap a \Big\downarrow } & \source{\Big\Downarrow\rlap{1_a}} & \Big\Vert \\ \source\cata & \twocellctb {\source{\boxed\sigma}} {\source{\hom a \cata -}} {\hom {\source a} X {\target( \source{?'}f \target)}} & \Set \\ \end{array}} \] $=$ \[\bbox[20px,border:4px groove black]{\begin{array}{} & \xrightarrow[]{\textstyle 1} \\ \cati & \red{ \Downarrow\rlap x } & \Set \\ & \source{{} \xrightarrow[\textstyle a]{} \cata} \xrightarrow[\textstyle \hom {\source a} X {\target(\source{?'} \black f\target)}]{} \\ \end{array}} \] $=$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xrightarrow{\textstyle 1} & \Set\\ \source{ \llap{a} \Big\downarrow } & \red{ \Big\Downarrow\rlap x } & \Big\uparrow \rlap{ \homst a X - } \\ \source\cata & \xrightarrow[\textstyle f]{} & \target\catb \\ \end{array}}\] $=$ \[\bbox[20px,border:4px groove black]{\begin{array}{} & \xrightarrow[]{\textstyle 1} \\ \cati & \red{ \Downarrow\rlap x } & \Set \\ & \target{ {} \xrightarrow[\textstyle \source a \black f]{} \catb } \xrightarrow[\textstyle \hom {\source a} X -]{} \\ \end{array}} \] $=$ \[\bbox[20px,border:4px groove black]{\begin{array}{} \cati & \xrightarrow{\textstyle 1} & \Set \\ \source{\llap a \downarrow} \\ \source\cata & \target{\Big\Downarrow\rlap{1_{\source a \mkern{-1mu} \black f}}} & \Big\Vert \\ \llap f \downarrow \\ \target\catb & \twocellctb {\target{\boxed\tau}} {\target{\hom {\source a \black f} \catb -}} {\homst a X -} & \Set \\ \end{array}} \]


Now suppose that, (for each $\source{a\in\cata}$), we have (an $\red{\homst a x {} \in {}} \hom {\source a} X {\source a f}$).
The family $\boxed{(\red{\homst a x {} \in {}} \hom {\source a} X {\source a f})_{\source{a \in \cata}}}$ determines as above two biindexed families of functions:

  • an ($\source{a\in\cata, a'\in\cata}$)-indexed family of functions $\boxed{(\source{\hom a \cata {a'} \xrightarrow[]{\textstyle \hom a \sigma {a'}} {}} \hom {\source a} X {\source{a'}f} )_{\source{a\in\cata, a'\in\cata}}}$ which, for each fixed $\source{a\in\cata}$, is natural in $\source{a'\in\cata}$, and
  • an ($\source{a\in\cata}, \target{b'\in\catb}$)-indexed family of functions $\boxed{(\target{\hom {\source a \black f} \catb {b'} \xrightarrow[]{\textstyle \homst a \tau {b'}} {}} \homst a X {b'} )_{\source{a\in\cata}, \target{b'\in\catb}}}$ which, for each fixed $\source{a\in\cata}$, is natural in $\target{b'\in\catb}$,
i.e., each biindexed family, for each fixed $\source{a\in\cata}$, is natural in its second, covariant, variable.


Sublemma
The following three naturality conditions on these families are logically equivalent:
  • $\source{(\forall a'\in\cata) \Big[ (\hom a \cata {a'} \xrightarrow[]{\textstyle \hom a \sigma {a'}} {}} \hom {\source a} X {\source{a'}f} )_{\source{a\in\cata}}$ is natural in $\source{a\in\cata \Big] }$,
  • $\red( 1 \red{{}\xrightarrow[]{\textstyle \homst a x {}} {}} \hom {\source a} X {\source a f} \red)_{\source{a\in\cata}}$ is extraordinarily natural in $\source{a\in\cata}$,
  • $\target{(\forall b'\in\catb)} \source{\Big[} \target{(\hom {\source a \black f} \catb {b'} \xrightarrow[]{\textstyle \homst a \tau {b'}} {}} \homst a X {b'} \target)_{\source{a\in\cata}}$ is natural in $\source{a\in\cata \Big] }$.

Thus we have the

Lemma. (YS1, bimodule form)

\[\bbox[20px,border:4px groove red]{ \hom {\source{\hom ? \cata {\source{?'}}}} {\source[ \source{\cata^{\rm op}\times\cata} , \Set \source] } {\hom {\source ?} X {\target(\source{?'} f\target)}} \cong \red\{ \red( 1 \red{{}\xrightarrow[]{\textstyle \homst a x {}} {}} \hom {\source a} X {\source a f} \red)_{\source{a\in\cata}} \;\; \text{extraordinarily natural in $\source{a\in\cata}$} \red\} \cong \hom {{\hom {(\source ? f)} {\target\catb} -}} {\target[ {\source{\cata^{\rm op}}\times\target\catb} , \Set \target] } {\homst ? X -} }\]

Proof of sublemma.
First, here are the 1-diagrams (the commutativity of which) expresses (the naturality conditions) with regard to (an arrow $\source{\alpha_0 : \obja_1 \to \obja}$ in $\source\cata$):

the naturality of $\hom ? \sigma \objap$ the extraordinary naturality of $\homst ? x {}$ the naturality of $\homst ? \tau \objbp$
\[\begin{array}{} \source{ \obja } \\ \source{ \llap{\alpha_0} \bigg\uparrow } \\ \source{ \obja_1 } \\ \end{array}\] \[\begin{array}{} \source{\hom a \cata {a'}} & \source{\xrightarrow[]{\textstyle \hom a \sigma {a'}}} & \hom {\source a} X {\source{a'}f} \\ \source{ \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\alpha_0} \cata {a'} } & \source{ \hom {\alpha_0} \sigma {a'} } & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {{\source{a'}f}} \\ \source{ \hom {a_1} \cata {a'} } & \source{ \xrightarrow[\textstyle \hom {a_1} \sigma {a'}]{} } & \hom {\source{a_1}} X {\source{a'}f} \\ \end{array} \] \[\begin{array}{} 1 & \red{ \xrightarrow[]{\textstyle \hom {\source a} x {}} } & \hom {\source a} X {\source a f} \\ \red{ \llap{\homst {a_1} x {} } \bigg\downarrow } & \homst {\alpha_0} {\red x} {} & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\source a f} \\ \hom {\source{a_1}} X {\source{a_1} f} & \xrightarrow[\textstyle \hom {\source{a_1}} X {\source{\alpha_0} f}]{} & \hom {\source{a_1}} X {\source a f} \\ \end{array} \] \[\begin{array}{} \hom {\source{a}f} {\target\catb} {\target{b'}} & \target{ \xrightarrow[]{\textstyle \hom {\source a} \tau {b'}} } & \homst a X {b'} \\ \mkern{17mu} \target{\bigg\downarrow} \mkern{-35mu} \hom {\source{\alpha_0} f} {\target\catb} {\target{b'}} & \homst {\alpha_0} {\target\tau} {b'} & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\target{b'}} \\ \hom {\source{a_1}f} {\target\catb} {\target{b'}} & \target{ \xrightarrow[\textstyle \hom {\source{a_1}} \tau {b'}]{} } & \homst {a_1} X {b'} \\ \end{array} \]
the right face of the diagram for $\sigma$ below the common lower left face of both diagrams below the right face of the diagram for $\tau$ below

The following diagrams are used to prove the sublemma.
The diagrams are missing the diagonal arrows for the instances of $\source\sigma$ and $\target\tau$,
due to limitations in the TeX/LaTeX/MathJax software which is producing the diagrams,
but if you print out the page containing the diagrams you can easily fill in the diagonals yourself.
(In each diagram there should be six parallel diagonal arrows -- one for $1_1$ and five for the instances of either $\source\sigma$ or $\target\tau$.)
Which is not a bad exercise, by the way.
Or you can just let your imagination fill in the diagonal arrows.

\[\begin{array}{} && \target{\buildrel \textstyle \beta \over \rightarrow} \\ 1 & \xrightarrow[]{\textstyle 1_{\source{a}f}} & \hom {\source{a}f} {\target\catb} {\source{a}f} & \xrightarrow[]{\textstyle \hom {\source{a}f} {\target\catb} {\target\beta}} & \hom {\source{a}f} {\target\catb} {\target{b'}} & \target{\ni \beta} \\ \llap{1_{\source{a_1} f}}\bigg\downarrow & \llap{\lower3pt\hbox{$\source{\alpha_0} f \!\!$}} \searrow & \mkern{17mu} \bigg\downarrow \mkern{-35mu} \hom {\source{\alpha_0} f} {\target\catb} {\source{a}f} & \hom {\source{\alpha_0} f} {\target\catb} {\target\beta} & \mkern{17mu} \bigg\downarrow \mkern{-35mu} \hom {\source{\alpha_0} f} {\target\catb} {\target{b'}} \\ \hom {\source{a_1} f} {\target\catb} {\source{a_1} f} & \xrightarrow[\textstyle \hom {\source{a_1} f} {\target\catb} {\source{\alpha_0} f}]{} & \hom {\source{a_1} f} {\target\catb} {\source{a}f} & \xrightarrow[\textstyle \hom {\source{a_1} f} {\target\catb} {\target\beta}]{} & \hom {\source{a_1} f} {\target\catb} {\target{b'}} \\ & 1_1 & \homst a {\check\tau} {} & \hom {\source a} {\target\tau} {\source a f} & \homst a {\target\tau} \beta & \homst a {\target\tau} {b'} \\ & \homst {a_1} {\check\tau} {} & \homst {\alpha_0} {\check\tau} {} \red? & \hom {\source \alpha_0} {\target\tau} {\source a f} \red? & \homst {\alpha_0} {\target\tau} \beta \red? & \homst {\alpha_0} {\target\tau} {b'} \red? \\ & \hom {\source{a_1}} {\target\tau} {\source{a_1} f} & \hom {\source{a_1}} {\target\tau} {\source{\alpha_0} f} & \hom {\source a_1} {\target\tau} {\source a f} & \homst {a_1} {\target\tau} \beta & \homst {a_1} {\target\tau} {b'} \\ && 1 & \xrightarrow[]{\textstyle \homst a {\red x} {} } & \hom {\source{a}} X {\source{a}f} & \xrightarrow[]{\textstyle \homst a X \beta } & \homst a X {b'} & \ni (\hom {\source a} {\red x} {}) \homst a X \beta = (\target\beta) \homst a {\target\tau} {b'} \\ && \llap{\homst {a_1} {\red x} {}}\bigg\downarrow & \homst {\source{\alpha_0}} {\red x} {} \red? & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\source{a} f} & \hom {\source{\alpha_0}} X {\target\beta} & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\target{b'}} \\ && \hom {\source{a_1}} X {\source{a_1} f} & \xrightarrow[\textstyle \hom {\source{a_1}} X {\source{\alpha_0} f}]{} & \hom {\source{a_1}} X {\source{a}f} & \xrightarrow[\textstyle \hom {\source{a_1}} X {\target\beta}]{} & \hom {\source{a_1}} X {\target{b'}} \\ \end{array} \taglabel{tau-nat-in-A} \]


Also:

\[\begin{array}{} && \source{\buildrel \textstyle \alpha \over \rightarrow} \\ 1 & \xrightarrow[]{\textstyle 1_{\source{a}}} & \hom {\source{a}} {\source\cata} {\source{a}} & \xrightarrow[]{\textstyle \hom {\source{a}} {\source\cata} {\source\alpha}} & \hom {\source{a}} {\source\cata} {\source {a'}} & \source{\ni \alpha} \\ \llap{1_{\source{a_1}}}\bigg\downarrow & \llap{\lower3pt\hbox{$\source{\alpha_0}\!\!\!\!$}} \searrow & \mkern{12mu} \bigg\downarrow \mkern{-28mu} \hom {\source{\alpha_0} } {\source\cata} {\source{a}} & \hom {\source{\alpha_0} } {\source\cata} {\source\alpha} & \mkern{12mu} \bigg\downarrow \mkern{-28mu} \hom {\source{\alpha_0} } {\source\cata} {\source {a'}} \\ \hom {\source{a_1}} {\source\cata} {\source{a_1}} & \xrightarrow[\textstyle \hom {\source{a_1}} {\source\cata} {\source{\alpha_0}}]{} & \hom {\source{a_1}} {\source\cata} {\source{a}} & \xrightarrow[\textstyle \hom {\source{a_1}} {\source\cata} {\source\alpha}]{} & \hom {\source{a_1}} {\source\cata} {\source {a'}} \\ & 1_1 & \homst a {\check\sigma} {} & \source{\hom a \sigma a} & \homst a {\source\sigma} \alpha & \source{\hom a \sigma {a'}} \\ & \homst {a_1} {\check\sigma} {} & \homst {\alpha_0} {\check\sigma} {} \red? & \source{\hom {\alpha_0} \sigma a} \red? & \source{\hom {\alpha_0} \sigma \alpha} \red? & \source{\hom {\alpha_0} \sigma {a'}} \red? \\ & \source{\hom {a_1} \sigma {a_1}} & \source{\hom {a_1} \sigma {\alpha_0}} & \source{\hom {a_1} \sigma a} & \source{\hom {a_1} \sigma \alpha} & \source{\hom {a_1} \sigma {a'}} \\ && 1 & \xrightarrow[]{\textstyle \homst a {\red x} {} } & \hom {\source{a}} X {\source{a}f} & \xrightarrow[]{\textstyle \hom {\source {a}} X {\source\alpha f}} & \hom {\source{a}} X {\source {a'}f} & \ni (\hom {\source a} {\red x} {}) \hom {\source a} X {\source\alpha f} = (\source\alpha) \hom {\source a} {\source\sigma} {\source{a'}} \\ && \llap{\homst {a_1} {\red x} {}}\bigg\downarrow & \homst {\source{\alpha_0}} {\red x} {} \red? & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\source{a}f} & \hom {\source{\alpha_0}} X {\source\alpha f} & \mkern{12mu} \bigg\downarrow \mkern{-29mu} \hom {\source{\alpha_0}} X {\source{a'}f} \\ && \hom {\source{a_1}} X {\source{a_1} f} & \xrightarrow[\textstyle \hom {\source{a_1}} X {\source{\alpha_0} f}]{} & \hom {\source{a_1}} X {\source{a}f} & \xrightarrow[\textstyle \hom {\source{a_1}} X {\source\alpha f}]{} & \hom {\source{a_1}} X {\source{a'} f} \\ \end{array} \taglabel{sigma-nat-in-A} \]

The text of the proof of the above is currently being filled in.
$\target{(\forall b'\in\catb)} \source{\Big[} \target{(\hom {\source a \black f} \catb {b'} \xrightarrow[]{\textstyle \homst a \tau {b'}} {}} \homst a X {b'} \target)_{\source{a\in\cata}}$ is natural in $\source{a\in\cata \Big] }$
iff
$\target{(\forall b'\in\catb)}\source{(\forall \alpha_0 \in \hom {a_1} \cata a)}$ [the right face $\homst {\alpha_0} {\target\tau} {b'}$ of the $\homst {\alpha_0} {\target\tau} \beta$ cube commutes].
Assume the above is true and take $\target{b'} = \source a f$.
Then $\source{(\forall \alpha_0 \in \hom {a_1} \cata a )}$ [the left face $\hom {\source{\alpha_0}} {\target\tau} {\source a f}$ of the $\homst {\alpha_0} {\target\tau} \beta$ cube commutes].
Evaluating at $1_{\source a f}$ and using $\hom {\source{a_1}} {\target\tau} {\source{\alpha_0}f}$ gives (to be filled in).


Work in progress: